Task Semantics for Tense and Modality

TOPOS INSTITUTE Benjamin Brast-McKie November 25, 2025

Tense Operators

Strict Model: Building on Kripke's semantics, Prior introduces $\mathcal{P} = \langle T, <, |\cdot| \rangle$ where:

- 1. *T* is a nonempty set of *times* (also called *moments* and *world-states*).
- 2. *Earlier than* < is a strict partial order (possibly total or left-linear).
- 3. $|p_i| \subseteq T$ interprets each sentence letter $p_i \in \mathbb{L}$.

Strict History: A strict history $h_i = \langle T_i, <_i \rangle$ is a maximal total suborder of $\langle T, < \rangle$.

- 4. Let $H_{\mathcal{P}}$ be the set of all histories in \mathcal{P} .
- 5. Let $H_{\mathcal{D}}^x = \{h_i \in H_{\mathcal{D}} : x \in T_i\}$ be histories through time x.

Ockhamist Semantics: Thomason's (1970) reconstruction where $h_i \in H_{\mathcal{P}}$ and $x \in h_i$:

- 6. \mathcal{P} , h_i , $x \models p_i$ iff $x \in |p_i|$ and $x \in h_i$.
- 7. $\mathcal{P}, h_i, x \models \mathbb{P}\varphi \text{ iff } \mathcal{P}, h_i, y \models \varphi \text{ for all } y <_i x \text{ in history } h_i.$
- 8. \mathcal{P} , h_i , $x \models \mathbb{F}\varphi$ *iff* \mathcal{P} , h_i , $y \models \varphi$ for all $y >_i x$ in history h_i .
- 9. $\mathcal{P}, h_i, x \models \boxdot \varphi \text{ iff } \mathcal{P}, h_i, x \models \varphi \text{ for all } h_i \in H^x_{\mathcal{D}}.$

Structural Problem: Times cannot occur more than once or in different orders.

10. Giving up irreflexivity/transitivity undermines the reading of <.

Two-Dimensional Semantics

Two-Dimensional Model: $\mathcal{M}_2 = \langle W, T, \leq, |\cdot| \rangle$ where W is a nonempty set of *worlds*, T is a nonempty set of *times*, \leq is a weak total order, and $|p_i| \subseteq W \times T$.

Kaplan's Semantics: For world $w \in W$ and time $x \in T$:

- 1. \mathcal{M}_2 , w, $x \models p_i$ iff $\langle w, x \rangle \in |p_i|$.
- 2. $\mathcal{M}_2, w, x \not\models \bot$.
- 3. $\mathcal{M}_2, w, x \models \varphi \rightarrow \psi \text{ iff } \mathcal{M}_2, w, x \not\models \varphi \text{ or } \mathcal{M}_2, w, x \models \psi.$
- 4. $\mathcal{M}_2, w, x \models \mathbb{P}\varphi \text{ iff } \mathcal{M}_2, w, y \models \varphi \text{ for all } y < x.$
- 5. \mathcal{M}_2 , w, $x \models \mathbb{F}\varphi$ iff \mathcal{M}_2 , w, $y \models \varphi$ for all y > x.
- 6. \mathcal{M}_2 , w, $x \models \Box \varphi$ *iff* \mathcal{M}_2 , u, $x \models \varphi$ for all $u \in W$.

Logical Consequence: $\Gamma \vDash \varphi$ iff for any two-dimensional model \mathcal{M}_2 , world $w \in W$, and time $x \in T$, if \mathcal{M}_2 , w, $x \vDash \gamma$ for all premises $\gamma \in \Gamma$, then \mathcal{M}_2 , w, $x \vDash \varphi$.

Invalid: $\not\models \Box \varphi \rightarrow \triangle \varphi$ and $\not\models \nabla \varphi \rightarrow \Diamond \varphi$ (where $\triangle \varphi \coloneqq \mathbb{P} \varphi \land \varphi \land \mathbb{F} \varphi$ and $\nabla \varphi \coloneqq \neg \triangle \neg \varphi$).

Task Semantics

World-States: W is a nonempty set of world-states (instantaneous configurations).

Temporal Order: $\mathcal{D} = \langle D, +, \leq \rangle$ is a totally ordered abelian group of *durations*.

Task Relation: ' $w \Rightarrow_x u$ ' reads ' $w \in W$ can transition to $u \in W$ in duration $x \in D$ '.

Frame: $\mathcal{F} = \langle W, \mathcal{D}, \Rightarrow \rangle$ where the following principles hold:

- 1. $w \Rightarrow_0 w$ for all $w \in W$.
- 2. $w \Rightarrow_{x+y} v$ whenever $w \Rightarrow_x u$ and $u \Rightarrow_y v$.

World History: Any function $\tau: X \to W$ where:

- 3. $X \subseteq D$ is convex (if $x, z \in X$ and $x \le y \le z$, then $y \in X$).
- 4. Task constraint: $\tau(x) \Rightarrow_{y-x} \tau(y)$ for all $x, y \in X$ with $x \leq y$.

Model: $\mathcal{M} = \langle W, \mathcal{D}, \Rightarrow, |\cdot| \rangle$ where $\mathcal{F} = \langle W, \mathcal{D}, \Rightarrow \rangle$ is a frame and $|p_i| \subseteq W$ for every sentence letter $p_i \in \mathbb{L}$ of the language.

Semantic Clauses: Letting $H_{\mathcal{F}}$ be the set of world histories, $\tau \in H_{\mathcal{F}}$, and time $x \in D$:

- 5. $\mathcal{M}, \tau, x \models p_i \text{ iff } x \in \text{dom}(\tau) \text{ and } \tau(x) \in |p_i|$.
- 6. $\mathcal{M}, \tau, x \not\models \bot$.
- 7. $\mathcal{M}, \tau, x \models \varphi \rightarrow \psi \text{ iff } \mathcal{M}, \tau, x \not\models \varphi \text{ and } \mathcal{M}, \tau, x \models \psi.$
- 8. $\mathcal{M}, \tau, x \models \Box \varphi \text{ iff } \mathcal{M}, \sigma, x \models \varphi \text{ for all } \sigma \in H_{\mathcal{F}}.$
- 9. $\mathcal{M}, \tau, x \models \mathbb{P}\varphi \text{ iff } \mathcal{M}, \tau, y \models \varphi \text{ for all } y < x.$
- 10. \mathcal{M} , τ , $x \models \mathbb{F}\varphi$ *iff* \mathcal{M} , τ , $y \models \varphi$ for all y > x.

Valid: $\models \Box \varphi \rightarrow \triangle \varphi$ and $\models \nabla \varphi \rightarrow \Diamond \varphi$.

Stability and Future Contingency

Stability: $\mathcal{M}, \tau, x \models \boxdot \varphi$ *iff* $\mathcal{M}, \sigma, x \models \varphi$ for all $\sigma \in H_{\mathcal{F}}$ where $\sigma(x) = \tau(x)$.

Will Always: $! \varphi := ! \varphi$. Could Always: $? \varphi := \lozenge ! \varphi$

Will Eventually: $\lozenge \varphi := \boxdot \lozenge \varphi$ *Could Eventually:* $\lozenge \varphi := \lozenge \lozenge \varphi$

A Logic for Tense and Modality (TM)

TM is the smallest extension of propositional logic PL closed under:

MK If $\Gamma \vdash \varphi$, then $\Box \Gamma \vdash \Box \varphi$. **MP** $\varphi, \varphi \rightarrow \psi \vdash \psi$.

TF $\Box \varphi \rightarrow \Box \varphi$.

 $\mathbf{MB} \ \varphi \to \Box \Diamond \varphi.$ $\mathbf{MT} \ \Box \varphi \to \varphi.$

 $\mathbf{MF} \square \varphi \to \square \mathbb{F} \varphi$.

T4 $\mathbb{F}\varphi \to \mathbb{F}\mathbb{F}\varphi$.

M4 $\Box \varphi \rightarrow \Box \Box \varphi$. **TD** If $\vdash \varphi$, then $\vdash \varphi_{\langle P|F \rangle}$. **TK** If $\Gamma \vdash \varphi$, then $\mathbb{F}\Gamma \vdash \mathbb{F}\varphi$.

TA $\varphi \to \mathbb{F} \mathcal{P} \varphi$.