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Abstract

Drawing on Kit Fine’s (2012c, 2017b,c) state semantics, this chapter es-
tablishes soundness and completeness for The Specific Logic of Unilateral
Ground (UGS). I will begin by restricting consideration in §2 to a proof
system UGSN in which a specificity operator has been included and nega-
tion does not occur within the scope of a grounding operator, providing
a semantics for UGSN in §3 where propositions are closed under finite
fusion. After proving soundness and completeness for UGSN in §4 and
§5, will extend these results in §6 to a class of models where propositions
are closed under infinite fusion. In §7, I will extend UGSN to UGS which
permits negation to occur within the scope of the unilateral grounding
operator, showing that UGS is sound and complete over the class of
bilateral infinite fusion models. By contrast with the Boolean lattices
of extensional and intensional logics, I will show in §8 that the space of
hyperintensional propositions under study form a bounded bilattice which
is neither distributive nor interlaced. I will conclude in §9 by defining
bilateral essence and ground in terms of unilateral ground, deriving a
range of theorems and admissible rules by which to reason with bilateral
essence and ground.

1 Introduction

In a number of publications, Kit Fine (2012c, 2016, 2017a,b,c) has developed
a hyperintensional theory of propositions in which propositions are exactly
verified and exactly falsified by states.1 Whereas worlds are understood to
be maximal on account of determining the truth-value of every proposition
whatsoever, states are required to be wholly relevant to the propositions that
they exactly verify or falsify, and so are able to draw distinctions which worlds
cannot. In addition to abandoning the maximality required of worlds, states
need not be possible. Although a primitive distinction between possible and
impossible states plays a critical role in developing a state semantics for modal
logic, no such distinction will be needed for the present pursuit. Accordingly,
both the semantic machinery used to study validity in the logic of ground, as

1 Fine has developed applications of the state semantic framework to a wide variety of topics,
reaching well beyond the semantics of ground. See Fine (2012a, 2014, 2013, 2018a,b, 2020).
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well as the intended model used to guide our interpretation of the semantics
may be said to be free of any dependence on primitive modality.

Given the requirement that states be wholly relevant to the propositions
which they exactly verify or falsify, the exact verifiers for A and  A will not
typically partition the set of states. Rather, many states may exactly verify
neither A nor  A, where similarly, many states may exactly falsify neither
A nor  A. Moreover, the exact verifiers for A will in no way determine the
exact verifiers for  A, and so without recourse to exact falsification in addition
to exact verification, there is no systematic way to relate the propositions
expressed by a sentence and its negations. Accordingly, I will follow Fine
in taking the exact verifiers for  A to be the exact falsifiers for A, and the
exact falsifiers for  A to be the exact verifiers for A. In this way the bilateral
proposition consisting of both exact verifiers and falsifiers assigned to a sentence
will determine the bilateral proposition assigned to its negation.2

Just as the set of exact verifiers (falsifiers) for  A is not the complement
within the set of states of the exact falsifiers (verifiers) A, it also follows
from the requirement that states be wholly relevant to the propositions which
they exactly verify or falsify that conjunction cannot be interpreted by set
intersection as in extensional and intensional semantics. For instance, the exact
verifiers for A may be disjoint from the exact verifiers for B, and yet A^B may
have exact verifiers. Given a notion of state fusion, I will follow Fine in taking
A^B to be exactly verified by any fusion of an exact verifier for A and an exact
verifier for B. Similarly, given an exact falsifier for A, and an exact falsifier
for B, their fusion will be an exact falsifier for A _ B. Additionally, I will
assume what Fine calls an inclusive semantics for disjunction and conjunction
where any exact verifier for A, B, or A ^ B is an exact verifier for A _ B,
and any exact falsifier for A, B, or A_B is an exact falsifier for A^B. As
brought out below, the sets of exact verifiers and falsifiers for propositions will
be closed under fusion. Building on Fine’s work, it remains to develop a logic
for the most natural entailment relations holding between propositions in this
hyperintensional setting.

We may begin by observing that in any theory of propositions where
propositional identity satisfies the Boolean identities, disjunctive part may
be shown to be the converse of conjunctive part, where entailment may be
defined in terms of either. More specifically, letting A ď B – A_B ” B and
A Ď B – A^ B ” B where ‘”’ is taken to express propositional identity in
a given theory, we may show that if the theory of propositions in question is
Boolean, then pA ď Bq Ø pB Ď Aq.3 For instance, assuming an extensional
theory of propositions, ‘ď’ expresses the material conditional and ‘Ď’ expresses
its converse. Similarly, in an intensional theory of propositions, ‘ď’ expresses
the strict conditional whereas ‘Ď’ expresses its converse. On both extensional
and intensional theories of propositions, there is just one entailment relation

2 See Fine (2017d,b) for further discussion.
3 Proof: If A ď B, it follows that A_B ” B, and so by substitution A^ pA_Bq ” A^B.

By absorption, A ” A^B, and so B Ď A. The reverse derivation is similar.
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since nothing new is added by also including converse relations.
Whereas in extensional and intensional logics, conjunctive and disjunctive

part are converse relations, these definitions correspond to distinct entailment
relations in the present setting. As brought out in §8, the theory of bilateral
propositions elaborated below does not satisfy the Boolean absorption laws,
where as a result pA ď Bq Ø pB Ď Aq does not hold in general. Accordingly,
the state semantic framework admits of two natural entailment relations Ď and
ď which I will call by the names essence and ground, respectively. Informally, I
will take ‘Ď’ and ‘ď’ to regiment ‘necessary for’ and ‘sufficient for’ respectively,
where essence and ground may be shown to track relevance in addition to
modal profile. Additionally, I will take both essence and ground to be “worldly”
insofar as they are to relate propositions understood as things being certain
ways rather than representations of things being some way or other. Moreover,
I will assume essence and ground are reflexive and non-factive so that every
proposition grounds itself independent of whether that proposition obtains or
not. Both the irreflexive and factive analogues may then be defined in terms
of the reflexive non-factive notions of essence and ground.4

Although essence and ground are not converses, essence and ground are
nevertheless interdefinable in a language with a negation operator which satisfies
the involution law   A ” A. As shown in §8, both pA ď Bq Ø p A Ď  Bq
and pA Ď Bq Ø p A ď  Bq are valid, where the space of bilateral propositions
may be shown to form a bilattice ordered by essence and ground. Given that
essence and ground are interdefinable, I will take xA Ď By to abbreviate
x A ď  By purely as a matter of convention, defining propositional identity
in terms of essence and ground rather than vice versa in §9.5 In order to
articulate such definitions, negation must be permitted to occur within the
scope of a grounding operator. However, we may observe that sentences of
this kind are excluded from Fine’s (2012c) Pure Logic of Ground (PLG) which
aims to study the atomic sentences which can be articulated by a range of
primitive grounding operators in the absence of any other operators.6

Instead of admitting distinct primitives for each notion of ground that Fine
includes in PLG while excluding all other operators from the logic, I will begin
with a single primitive grounding operator ‘�’ which I will refer to as unilateral
ground. In contrast to ď which imposes constraints on both the exact verifiers
and falsifiers for the propositions involved, A � B only requires that every
exact verifier for A is also an exact verifier for B. We may observe that the
semantics for unilateral ground is similar to the semantics for the material and
strict conditionals, only that bilateral propositions have been substituted for
extensional and intensional propositions. Nevertheless, we may define ď and
Ď in terms of � given a language which includes the extensional operators:

Unilateral Equivalence: Let xA « By abbreviate xpA ď Bq ^ pB ď Aqy.

4 See Chapter 2 as well as Fine (2001, 2012b, 2015) for related philosophical discussion.
5 See §5 in Chapter 2 and §1 in Chapter 4 for related discussion of these definitions.
6 See Chapter 1 for further discussion.
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Unilateral Essence: Let xA�By abbreviate xA^B « By.

Ground: Let xA ď By abbreviate xpA�Bq ^ p A� Bqy.

Essence: Let xA Ď By abbreviate xpA�Bq ^ p A� Bqy.

Restricting attention to a language which includes ‘�’ rather than ‘ď’ among
its primitive operators has the effect of greatly simplifying the present attempt
to provide a complete logic for ground.7 In order to define ground in terms of
unilateral ground, the operator for negation must be permitted to occur within
the scope of a grounding operator, where conjunction is permitted to occur
between atomic grounding sentences. Accordingly, I will lift the restrictions
that Fine imposes in developing PLG, permitting any extensional combination
of atomic unilateral grounding sentences of the form xA�By where at most
the extensional operators may occur within xAy and xBy.

Despite admitting of a much wider range of well-formed sentences than
is included in PLG, I will nevertheless exclude consideration of sentences in
which grounding operators occur within the scope of a grounding operator, as
well as purely extensional sentences and extensional combinations on purely
extensional and non-extensional sentences such as xA^ pA ď Bqy. Although
one might hope to provide a logic which admits of a wider range of sentences,
such ambitions reach beyond the scope of the present pursuit.8

By contrast with the attempt to establish completeness for a logic with a
primitive grounding operator, Fine and Jago (2019) provide a complete logic
for their exact entailment relation ( which holds between a set of sentences in
a purely extensional language and a further sentence of that language. Whereas
grounding operates on propositions, exact entailment is a logical consequence
relation which quantifies over both models and states.9 Fine and Jago also
require the exact verifiers and falsifiers for a proposition to be convex insofar
as any state between two exact verifiers (falsifiers) in mereological order for
a proposition must also be an exact verifier (falsifier) for that proposition.
However, imposing convexity requires making some alteration to the inclusive
semantics for conjunction and disjunction.10 Nevertheless, were Fine and Jago
to abandon their convexity constraint, we could show that A ( B just in case
A�B is valid on the definition of validity that I will go on to provide. Thus I
will not further consider exact entailment in what follows.

In addition to taking ‘�’ to be primitive and ‘ď’ to be defined, I will
also include a specificity operator ‘$’ in the language presented below. Let
a proposition be called specific just in case exactly one state verifies that
proposition.11 The specificity operator may be compared to the singularity

7 See Chapter 1 and Fine (2012b) for discussion of a range of further grounding operators
which may be defined in terms of ground in a language which includes extensional operators.
8 See §7 of Chapter 4 for discussion of the semantics limitations the present framework

faces in attempting to interpret sentences with nested grounding operators.
9 I have adapted their notation to avoid confusion with what is to come below.

10 See §6 in Chapter 3 and §3 in Chapter 4 for discussion.
11 Fine (2017c, p. 695) employs the label ‘determinate’ rather than ‘specific’.
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predicate ‘S’ included in plural logics where xSpaaqy reads xThere is exactly one
of the aasy, as well as to the numerical possibility operator ‘21’ where x21Ay
reads xThere is exactly one possibility in which Ay. As brought out in §5, the
specificity operator will play a crucial role in the completeness proof, where
states in the Henkin model are ground-theoretic equivalence classes generated
from specific sentences, where attempts to establish completeness without a
specificity operator faced numerous difficulties. Although the motivation for
including the specificity operator in the logic takes a purely technical form,
specificity operators are nevertheless of interest in their own right.

The completeness proof will be structured as follows. I will begin in §2 by
introducing The Specific Logic of Unilateral Ground without Negation (UGSN)
in which negation does not occur within the scope of a unilateral grounding
operator, providing a state semantics for UGSN in which the exact verifiers for
a proposition are closed under finite fusion in §3. I will then prove that UGSN
is both sound and complete over the class C of finite fusion models in §4 and
§5, respectively. These results will then be extended to a class of models C8
in which exact verifiers are also closed under infinite fusion in §6, proving in
§7 that The Specific Logic of Unilateral Ground (UGS) in which negation is
permitted to occur within the scope of a unilateral grounding operator is sound
and complete over the class C˘ of bilateral infinite fusion models. Instead of
forming a Boolean lattice, I will I show in §8 that the space of propositions
forms a bounded bilattice which is neither distributive nor interlaced. I will
conclude in §9 by deriving a subsystem of UGS which I will call The Logic of
Essence and Ground (EG) which includes a range of theorems and admissible
rules for reasoning with essence and ground.

2 Proof Theory

We may begin by restricting consideration to a simplified propositional language
L´ where the well formed sentences are built up in two separate stages. Given
a set of sentence letters L “ tpi : i P Nu together with a set of extremal
constants E “ tT ,K,V,

J́

u, we may define the pre-formed sentences (pfs) of
L´ as follows, where p P L and e P E are both arbitrary:

A ::“ p | e | A^A | A_A.

I will refer to ‘T ’ as the top and ‘K’ as the bottom, reading ‘V’ as the verum
and ‘

J́

’ as the falsum. As brought out in §3, T is the proposition which is
exactly verified by any state whatsoever, whereas V is only exactly verified by
the fusion of all states. Additionally, K is exactly verified by no states, whereas

J́

is only exactly verified by the state which trivially obtains.
Let pfspL´q be the set of pfs of L´, where A,B, . . . P pfspL´q, and

comppAq is the number of occurrences of ‘_’ and ‘^’ in A. If A,B P pfspL´q,
then both x$Ay and xA � By are well formed atomic sentence (wfas) of L´,
where atomspL´q is the set of all wfas of L´. We may then define the well
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formed sentences (wfs) of L´, letting α P atomspL´q be arbitrary:

ϕ ::“ α |  ϕ | ϕ^ ϕ | ϕ_ ϕ.

Let wfspL´q be the set of wfs of L´, where ϕ,ψ, . . . P wfspL´q, and let
comp`pϕq be the number of occurrences of ‘ ’, ‘_’, and ‘^’ in ϕ which do
not occur in any preformed subsentences (sub-pfs) of ϕ. For any sentences
A,B P pfspL´q, xA�By reads xIt being the case that A grounds it being the
case that By, or more simply, xA grounds By, indicating that A obtaining is
sufficient for B to obtain. We may also read x$Ay as xThere is exactly one way
for it to be the case that Ay, or more simply, xA is specificy, indicating that
there is only one state which exactly verifies A. As we will see, the theorems
of the logic belong to wfspL´q and not to pfspL´q.

As usual, ‘Ñ’ and ‘Ø’ may be introduced as metalinguistic abbreviations,
where I will also take xA�| By to abbreviate x pA � Bqy, letting xA « By

abbreviate xpA�Bq ^ pB �Aqy which expresses ground-theoretic equivalence.
Given the formation rules for L´, we may define syntactic consequence $ugsn

for The Specific Logic of Unilateral Ground without Negation (UGSN) to be
the smallest relation closed under truth-functional consequence which satisfies
the following, where A,B,C,D P pfspLq and ΓY tϕu Ď wfspLq:

Grounding Axioms and Rules

GA1 A�A_B.

GA3 A�A^A.

GA5 A^ pB ^ Cq� pA^Bq ^ C.

GA7 A^B �B ^A.

GA9 A�B,B � C $ A� C.

GA2 B �A_B.

GA4 A^A�A.

GA6 pA^Bq ^ C �A^ pB ^ Cq.

GA8 A�B,C �D $ A^ C �B ^D.

Extremal Axioms

VF1 $

J́

.

VF3

J́

^A�A.

VF5 V ^A� V.

VF7 A� T .

VF2 $V.

VF4 A�

J́

^A.

VF6 V � V ^A.

Specificity Rules

SP1 $A $ A�| K.

SP3 $A, $B $ $pA^Bq.

SP2 A « B $ $AØ $B.

SP4 $A,B �A $ pA�Bq _ pB � Kq.

SP5 $A,A� C _D $ pA� Cq _ pA�Dq _ pA� C ^Dq.

SP6 If Γ $ $pÑ rpp�Aq Ñ pp�Bqs where p P L does not occur in A,B, or in
any γ P Γ, then Γ $ A�B.

6
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SP7 If Γ, rpA�| Kq ^ pA�B ^ Cqs Ñ r$p^ $q ^ pp�Bq ^ pq � Cq ^ pp^ q �Aqs $ ϕ
where distinct p, q P L do not occur in ϕ or in any γ P Γ, then Γ $ ϕ.

A wfs ϕ of L´ is a theorem of UGSN just in case $ugsn ϕ. Letting xϕrA{Bsy be
the result of uniformly replacing all occurrences of xBy in xϕy with xAy, and
taking xϕpA{Bqy to be the result of replacing zero or more occurrences of xBy in
xϕy with xAy, we may derive the following admissible rules and theorems:

Admissible Rules

AR1 A� C,B � C $ugsn A_B � C.

AR3 A « B $ugsn C « CpA{Bq.

AR2 If Γ $ugsn ϕ, then ΓrA{ps $ugsn ϕrA{ps.

AR4 A « B,ϕ $ugsn ϕpA{Bq.

Grounding Theorems

T1 A^K�B.

T3 A�A^ pA_Bq.

T5 A^B �A_B.

T2 A�B _ T .

T4 A�A_ pA^Bq.

T6 A_pB^Cq�pA_Bq^pA_Cq.

Equivalence Theorems

E1 A « A.

E3 A_ T « T .

E5 A_K « A.

E7 A_A « A.

E9 A_B « B _A.

E11 A_ pB _ Cq « pA_Bq _ C.

E13 A^pB_Cq « pA^Bq_pA^Cq.

E2 A^K « K.

E4 A^ V « V

E6 A^

J́

« A.

E8 A^A « A.

E10 A^B « B ^A.

E12 A^ pB ^ Cq « pA^Bq ^ C.

E14 A^pB^Cq « pA^Bq^pA^Cq.

It is worth observing that of the equivalences for bounded distributive
lattices, the following four principles are conspicuously absent:

#Abs1 A^ pA_Bq « A.

#Abs2 A_ pA^Bq « A.

#Dist A_ pB ^ Cq « pA_Bq ^ pA_ Cq.

The following section will present countermodels to each of the above, and so
the corresponding space of propositions does not form a distributive lattice.
We may also note that although E13 is a theorems of UGSN, its dual #Dist
is not. As I will bring out in §7, these apparent asymmetries may be shown
to be an artefact of our present concern with unilateral propositions. Once

7



§2 Proof Theory Benjamin Brast-McKie

negation is permitted to occur within the scope of the grounding operator, we
may derive a range of theorems in §8 which maintains duality.

I will now provide proofs for selected theorems and admissible rules which
are novel to UGSN, assuming standard results from classical logic.

AR1 A� C,B � C $ugsn A_B � C.

Proof. Let A,B,C P pfspL´q and choose some p P L which does not
occur in A,B, or C. Thus A � C,B � C $ugsn A ^ B � C follows
from GA8 and GA4 by GA9. Additionally, we know by SP5 that
$p, p�A_B $ugsn pp�Aq _ pp�Bq _ pp�A^Bq. Consider:

p�A,A� C $ugsn p� C (1)

p�B,B � C $ugsn p� C (2)

p�A^B,A^B � C $ugsn p� C (3)

It follows that A� C,B � C, $p, p�A_B $ugsn p� C. Thus we know
that A�C,B �C $ugsn $pÑ rpp�A_Bq Ñ pp�Cqs, and so by SP6
A�C,B �C $ugsn A_B �C since p does not occur in A,B, or C.

AR2 If Γ $ugsn ϕ, then ΓrA{ps $ugsn ϕrA{ps. (Uniform Substitution)

Proof. The proof goes by induction on the number of applications of the
metarules in UGSN, where the only novel cases are given below:

Case SP6: Assume Γ $nugsn ϕ follows by SP6. Thus ϕ “ A � B
where Γ $n´1

ugsn $q Ñ rpq � Aq Ñ pq � Bqs for some q P L which does
not occur in A,B, or any γ P Γ. Thus we know by hypothesis that
ΓrA{ps $

n´1
ugsn $qrA{ps Ñ rpqrA{ps � ArA{psq Ñ pqrA{ps � BrA{psqs. If p “ q,

then it follows trivially that ΓrA{ps $
n
ugsn ϕrA{ps since q does not occur in

A,B, or any γ P Γ. If instead p ‰ q, then it follows from the above that
ΓrA{ps $

n´1
ugsn $q Ñ rpq � ArA{psq Ñ pq � BrA{psqs, for some q P L which

does not occur in A,B, or in any γ P Γ. Again by hypothesis, we know
that ΓrA{ps,rq‹{qs $

n´1
ugsn $qrq‹{qs Ñ rpqrq‹{qs �ArA{psq Ñ pqrq‹{qs �BrA{psqs,

where we may choose q‹ P L to be the sentence letter with the lowest index
which does not occur in ArA{ps, BrA{ps, or in any γ P ΓrA{ps. Equivalently,
ΓrA{ps $

n´1
ugsn $q‹ Ñ rpq‹ � ArA{psq Ñ pq‹ � BrA{psqs where q‹ does not

occur in ArA{ps, BrA{ps, or in any γ P ΓrA{ps. Thus it follows by SP6 that
ΓrA{ps $

n
ugsn ArA{ps �BrA{ps, and so ΓrA{ps $

n
ugsn ϕrA{ps.

Case SP7: Assume Γ $nugsn ϕ follows by SP7. Thus it follows that
Γ, r$A^pA�B^Cqs Ñ r$r^$q^pr�Bq^pq�Cq^pr^q�Aqs $ugsn ϕ
where distinct r, q P L do not occur in ϕ. By hypothesis we know that:

ΓrA{ps, r$ArA{ps ^ pArA{ps �BrA{ps ^ CrA{psqs Ñ

r$rrA{ps ^ $qrA{ps ^ prrA{ps �BrA{psq ^ pqrA{ps � CrA{psq ^ prrA{ps ^ qrA{ps �ArA{psqs

$n´1
ugsn ϕrA{ps

ΓrA{ps $
n´1
ugsn $qrA{ps Ñ rpqrA{ps � ArA{psq Ñ pqrA{ps � BrA{psqs. If p “ q,

then it follows trivially that ΓrA{ps $
n
ugsn ϕrA{ps since q does not occur in

A,B, or any γ P Γ. If instead p ‰ q, then it follows from the above that
ΓrA{ps $

n´1
ugsn $q Ñ rpq � ArA{psq Ñ pq � BrA{psqs, for some q P L which

does not occur in A,B, or in any γ P Γ. Again by hypothesis, we know
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that ΓrA{ps,rq‹{qs $
n´1
ugsn $qrq‹{qs Ñ rpqrq‹{qs �ArA{psq Ñ pqrq‹{qs �BrA{psqs,

where we may choose q‹ P L to be the sentence letter with the lowest index
which does not occur in ArA{ps, BrA{ps, or in any γ P ΓrA{ps. Equivalently,
ΓrA{ps $

n´1
ugsn $q‹ Ñ rpq‹ � ArA{psq Ñ pq‹ � BrA{psqs where q‹ does not

occur in ArA{ps, BrA{ps, or in any γ P ΓrA{ps. Thus it follows by SP7 that
ΓrA{ps $

n
ugsn ArA{ps �BrA{ps, and so ΓrA{ps $

n
ugsn ϕrA{ps.

Given that ΓrA{ps $
n
ugsn ϕrA{ps holds in each of the cases above, we

may conclude by discharge that if Γ $nugsn ϕ, then ΓrA{ps $
n
ugsn ϕrA{ps,

and so by induction that if Γ $ugsn ϕ, then ΓrA{ps $ugsn ϕrA{ps.

T1 $ugsn A^K�B.

Proof. Let A,B P pfspL´q and choose some p P L where p does not
occur in either A or B. Observe that $p $ugsn p�| K by SP1, and so by
propositional logic we know that $p, p�A^K $ugsn pp�| Kq^pp�A^Kq.
Choose distinct r, q P L which do not occur in A,B, or p. Consider:

rpp�| Kq ^ pp�A^Kqs Ñ r$r ^ $q ^ pr � Kq ^ pq �Aq ^ pr ^ q � pqs. p˚q

Thus $p, p�A^K, p˚q $ugsn $r ^ $q ^ pr � Kq ^ pq �Aq ^ pr ^ q � pq,
follows by propositional logic. However, we know that $ugsn $r Ñ pr�| Kq
by SP1, and so $ugsn  $r _ pr�| Kq by abbreviation. It follows that
$ugsn  $r_ $q_ pr�| Kq _ pq�| Aq _ pr^ q�| pq by propositional logic,
and so $ugsn  r$r ^ $q ^ pr � Kq ^ pq � Aq ^ pr ^ q � pqs. It follows
that $p, p�A^K, p˚q $ugsn  r$r^ $q^ pr�Kq^ pq�Aq ^ pr^ q� pqs.
Thus $p, p�A^K, p˚q $ugsn p�B by ex falso quodlibet, and so we may
conclude that p˚q $ugsn $pÑ rpp�A^Kq Ñ pp�Bqs.

Given the above, $ugsn $p Ñ rpp � A ^ Kq Ñ pp � Bqs follows by
SP7. Since p P L where p does not occur in either A or B, we may
conclude that $ugsn A^K�B by SP6 as desired.

T6 $ugsn A_ pB ^ Cq� pA_Bq ^ pA_ Cq.

Proof. Let A,B,C P pfspL´q, and choose some p P L where p does not
occur in A,B, or C. Observe that $p $ugsn p�| K by SP1, and so by
propositional logic $p, p�A^pB_Cq $ugsn pp�| Kq^pp�A^pB_Cqq.
Choose distinct r, q P L which do not occur in A,B,C, or p. Consider:

rpp�| Kq ^ pp�A^ pB _Cqqs Ñ r$r^ $q^ pr�Aq ^ pq�B _Cq ^ pr^ q� pqs. p˚q

So $p, p�A^pB_Cq, p˚q $ugsn $r^$q^pr�Aq^pq�B_Cq^pr^q�pq,
and so by SP4 that $p, r ^ q � p $ugsn pp� r ^ qq ^ pr ^ q � Kq, where
it follows from SP3 that $r, $q $ugsn $pr ^ qq, and from SP1 that
$pr ^ qq $ugsn r ^ q�| K. Thus $p, p� A^ pB _ Cq, p˚q $ugsn p� r ^ q
by propositional logic. We may now observe that it follows by SP5 that
$q, q �B _ C $ugsn pq �Bq _ pq � Cq _ pq �B ^ Cq. Consider:

p� r ^ q, r �A, q �B $ugsn p� pA^Bq _ pA^ Cq (1)

p� r ^ q, r �A, q � C $ugsn p� pA^Bq _ pA^ Cq (2)

p� r ^ q, r �A, q �B ^ C $ugsn p� pA^Bq _ pA^ Cq. (3)

Here, (1) follows by GA8, GA1, and GA9, where (2) is similar but draws
on GA2 in place of GA1. In order to justify (3), it is enough to observe

9
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that $ugsn A^ pB ^ Cq� pA^Bq ^ pA^ Cq by E14, and so together
with T5 we may conclude that $ugsn A^ pB ^Cq� pA^Bq _ pA^Cq.
Together with GA8 and GA9, (3) follows. Thus we may conclude that
$p, p � A ^ pB _ Cq, p˚q $ugsn p � pA ^ Bq _ pA ^ Cq. Since r and q
are distinct and do not occur in A,B,C, or p, we know by SP7 that
$p, p � A ^ pB _ Cq $ugsn p � pA ^ Bq _ pA ^ Cq, and so it follows
that $ugsn $p Ñ rp � A ^ pB _ Cq Ñ p � pA ^ Bq _ pA ^ Cqs. Thus
$ugsn A^ pB _ Cq� pA^Bq _ pA^ Cq follows by SP6.

E13 $ugsn A^ pB _ Cq « pA^Bq _ pA^ Cq.

Proof. Given that $ugsn A�A by E1, and $ugsn B �B _ C by GA1,
we know that $ugsn A ^ B � A ^ pB _ Cq follows by GA8. Similarly,
$ugsn A ^ C � A ^ pB _ Cq follows by E1, GA2, and GA8. Thus
$ugsn pA^Bq_ pA^Cq�A^pB_Cq follows by AR1, and so together
with T6 we may conclude that $ugsn A^pB_Cq « pA^Bq_pA^Cq.

3 Semantics

This section will draw on Kit Fine’s (2017b,c) recent work in order to provide
a semantics for L´. Rather than working over a space of possible worlds W
with an accessibility relation R, I will follow Fine in taking S to be a set states
of affairs, or states for short.12 Let a state space S be any ordered pair xS, ‹y
where S is any set closed under the binary operation ‹, mapping any two states
to their fusion. A state space xS, ‹y is mereological just in case it satisfies:

Null State: There is a null state ˝ P S such that ˝ ‹ s “ s for all s P S.

Full State: There is a full state ‚ P S such that ‚ ‹ s “ ‚ for all s P S.

Idempotency: s ‹ s “ s for all s P S.

Commutativity: s ‹ t “ t ‹ s for all s, t P S.

Associativity: ps ‹ tq ‹ r “ s ‹ pt ‹ rq for all s, t, r P S.

Assuming a “no class”-theory of classes, we may let M be the class of all
mereological state spaces, employing set notation where convenient. In order to
define the relevant classes of models for L´, consider the following definitions:

Fusion: X “ tx ‹ y : x, y P Xu.

S-Propositions: PS “ tX Ď S : X “ Xu.

Given any S PM where S “ xS, ‹y, a unilateral S-model of L´ is an ordered
triple Mv “ xS, ‹, | ¨ |vy where |p|v P PS for all p P L. For ease of exposition,
it will often be convenient to drop the subscript which names the model. We

12 See Fine (2017a, Draft) for discussion.
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may then let CS be the set of all S-models, and C “
Ť

tCS : S P Mu be the
proper class of all models of L´ whatsoever.

We may now provide a Finean state semantics for exact verification , for
all pfs L´ by means of the following recursive clauses:

Unilateral Pre-Semantics:

ppiq M, s , pi iff s P |pi|.

pT q M, s , T iff s “ s.

pKq M, s , K iff s ‰ s.

pVq M, s , V iff s “ ‚.

p

J́

q M, s ,

J́

iff s “ ˝.

p^q M, s , A^B iff s “ d ‹ t where M, d , A and M, t , B.

p_q M, s , A_B iff M, s , A or M, s , B or M, s , A^B.

Since there is no threat of ambiguity in what follows, I will often drop ‘exact’
from ‘exact verification’. The semantics may be called unilateral on account
of only including clauses for verification as opposed to both verification and
falsification as will be given below.13 Whereas only the null state ˝ verifies the

J́

, no state verifies the K. By contrast, every state verifies the T , whereas only
the full state ‚ verifies V . The conjunction clause formalises the idea that only
a fusion of verifiers for each of the conjuncts will verify the conjunction as a
whole. In the case of disjunction, a verifier for either disjunct will verify the
disjunction, as will a fusion of verifiers for each of the disjuncts.

Given that each M P CS assigns every p P L´ to a proposition |p| P PS
consisting of the verifiers for p in M, we may extend | ¨ | to all A P pfspL´q:

Unilateral Valuation: s P |A| iff M, s , A.

Letting |A| be the proposition that A P pfspL´q expresses in M, we may
define the extremal propositions in PS as follows:

Unilateral Extremal Propositions:

Top: TS “ S.

Bottom: KS “ ∅.

Verum: VS “ t‚u.

Falsum:

J́

S “ t˝u.

When ambiguity does not threaten, I will drop the subscript, letting context
determine the corresponding state space.

Having extended the valuation function to all A P pfspL´q in Unilateral
Valuation, we may now state the semantics for the wfs of L´ as follows:

Semantics:

p�q M ( A�B iff |A| Ď |B1|.

13 See Fine (2016, 2017a,b,c) for this usage. Fine (2017b) provides a semantics for sentences
which includes negation, crediting Van Fraassen (1969) for providing a related construction.
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p$ q M ( $A iff there is exactly one s P |A|.

p q M (  ϕ iff M * ϕ.

p^q M ( ϕ^ ψ iff M ( ϕ and M ( ψ.

p_q M ( ϕ_ ψ iff M ( ϕ or M ( ψ.

The semantic clause for grounding holds that A�B is true in M just in case
every exact verifier for A is an exact verifier for B, where $A is true in M just
in case A is verified by only one state.14 Let ϕ be a logical consequence of Γ
over C— symbolised by ‘Γ (C ϕ’— just in case for all M P C, if M ( B for all
B P Γ, then M ( ϕ. A wfs ϕ is C-valid just in case (C ϕ.

We may now define algebraic analogues of conjunction and disjunction
which are defined over the space of propositions PS :

Product: X ^ Y “ tx ‹ y : x P X, y P Y u.

Sum: X _ Y “ X Y Y Y pX ^ Y q.

Given any S PM, we may let AS “ xPS ,^,_,K,

J́

,V, T y where not only are
T ,K,V,

J́

P PS , but we may show that PS is closed under ^ and _ as follows:

L3.2 X ^ Y P PS for all S PM and X,Y P PS .

L3.3 X _ Y P PS for all S PM and X,Y P PS .

By the formation rules, AL´ “ xpfspL´q,^,_, T ,K,V,

J́

y is an algebra with
the same signature σL´ “ xt^,_u,Ey as AS , where the valuation function
induced by any M P CS is an L´-homomorphism | ¨ | : AL´ Ñ AS as below:

L´-Homomorphism: For any S PM and M P CS , the function | ¨ | : L´ Ñ AS is

an L´-homomorphism iff for every A,B P pfspLq both: (1)

|A^B| “ |A| ^ |B|; and (2) |A_B| “ |A| _ |B|.

L3.4 |A^B| “ |A| ^ |B|.

L3.5 |A_B| “ |A| _ |B|.

P3.1 |A| P PS .

The results above will be of use throughout what follows, where in §7 similar
results may be shown to hold once negation is included in the language.

We may then observe that xPS ,^y and xPS ,_y are semilattices on account
of satisfying idempotency, commutativity, and associativity. In particular, the
following identities hold for all S PM and X,Y, Z P PS :

14 Fine (2012b,c) gives a similar semantics for � in a language without $, ,^, and _.
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L3.6 X ^X “ X.

L3.7 X ^ Y “ Y ^X.

L3.8 pX ^ Y q ^ Z “ X ^ pY ^ Zq.

L3.9 X _X “ X.

L3.10 X _ Y “ Y _X.

L3.11 pX _ Y q _ Z “ X _ pY _ Zq.

Despite these results, AS need not form a lattice on account of failing to satisfy
the absorption laws, since there is some S PM and X,Y P PS such that:

L3.18 X ^ pX _ Y q ‰ X. L3.19 X _ pX ^ Y q ‰ X.

In addition to failing to form a lattice, we may show that AS is non-distributive
since there is some S PM and X,Y P PS such that:

L3.21 X _ pY ^ Zq ‰ pX _ Y q ^ pX _ Zq.

These results correspond to the absence of #Abs1, #Abs2, and #Dist from
UGSN, where the following section shows that #Abs1, #Abs2, and #Dist
are not theorems of UGSN. Nevertheless, for all S PM and X,Y P PS :

L3.22 X ^ pY _ Zq “ pX ^ Y q _ pX ^ Zq.

Although _ does not distributes over ^, we may distribute ^ over _. As we
will see in §7, the apparent asymmetry above will disappear once negation has
been included in the language. The remainder of the present section will be
devoted to establishing a selection of the claims enumerated above, drawing
on these results to prove that UGSN is sound over C in the following section.

L3.1 X ^ pY Y Zq “ pX ^ Y q Y pX ^ Zq for all S PM and X,Y, Z P PS .

Proof. Assume S P M and X,Y, Z P PS , letting s P X ^ pY Y Zq. It
follows that s “ x ‹ u for some x P X and u P Y Y Z. If u P Y , then
s P X^Y , and so s P pX^Y qYpX^Zq. Similarly, if u P Z, then s P X^Z,
and so s P pX ^Y qY pX ^Zq. Thus X ^pY YZq Ď pX ^Y qY pX ^Zq.

Assume instead that s P pX^Y qYpX^Zq. If s P X^Y , then s “ x‹y
for some x P X and y P Y , and so y P Y Y Z. Thus s P X ^ pY Y Zq.
Similarly, if s P X ^ Z, then s “ x ‹ z for some x P X and z P Z, and so
z P Y YZ. Thus s P X^pY YZq, and so pX^Y qYpX^Zq Ď X^pY YZq.
Together with the above, X^pY YZq “ pX^Y qYpX^Zq as needed.

L3.2 X ^ Y P PS for all S PM and X,Y P PS .

Proof. Assume S P M where X,Y P PS , and choose some s P X ^ Y .
By Idempotency, s P X ^ Y , and so X ^ Y Ď X ^ Y . To establish the
converse inclusion, assume that s P X ^ Y . It follows that s “ x ‹ y for
some x, y P X ^Y , and so x “ u ‹ v and y “ w ‹ z for some u,w P X and
v, z P Y . It follows that u ‹ w P X and v ‹ z P Y . Given that X,Y P PS ,
we know that X “ X and Y “ Y , and so u ‹w P X and v ‹ z P Y . Thus
pu ‹wq ‹ pv ‹ zq P X ^ Y , where pu ‹wq ‹ pv ‹ zq “ s by Associativity and
Commutativity. It follows that s P X ^ Y , and so X ^ Y Ď X ^ Y . Thus
we may conclude that X ^ Y “ X ^ Y , and so X ^ Y P PS .

13
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L3.3 X _ Y P PS for all S PM and X,Y P PS .

Proof. Follows from the definition of PS together with the Idempotency,
Commutativity, and Associativity of all S PM as in L3.2.

L3.4 |A^B| “ |A| ^ |B| for all A,B P pfspL´q and M P CS .

Proof. Let A,B P pfspL´q and M P CS . By Unilateral Valuation,
we know that |A|, |B| Ď S. We may then consider the following:

s P |A^B| iff M, s , A^B

iff s “ a ‹ b where M, a , A and M, b , B

iff s “ a ‹ b where a P |A| and b P |B|

iff s P |A| ^ |B|.

All of the biconditionals above hold by definition. Thus we may conclude
that |A^B| “ |A| ^ |B| as desired.

L3.5 |A_B| “ |A| _ |B| for all A,B P pfspL´q and M P CS .

Proof. Let A,B P pfspL´q and M P CS . By Unilateral Valuation,
we know that |A|, |B| Ď S. We may then consider the following:

s P |A_B| iff M, s , A_B

iff M, s , A, or M, s , B, or M, s , A^B

iff s P |A|, or s P |B|, or s P |A^B|

p:q iff s P |A|, or s P |B|, or s P |A| ^ |B|

iff s P |A| Y |B| Y p|A| ^ |B|q

p;q iff s P |A| _ |B|.

The biconditionals above all hold by definition with the exception of p:q
which follows by L3.4, and p;q which follows by Sum. Thus we may
conclude that |A_B| “ |A| _ |B|.

L3.6 X ^X “ X for all S PM and X P PS or X P PS .

Proof. Assume S P M and X P PS , and let s P X ^X. It follows that
s “ x ‹ x for some x P X, and so s P X. Since X P PS or X P PS , we
know that X “ X, and so s P X. Thus X ^X Ď X.

Assume instead that s P X. By definition, s ‹ s P X ^ X, and so
s P X ^X by Idempotency. Thus X Ď X ^X, and so X ^X “ X.

L3.7 X ^ Y “ Y ^X for all S PM and X,Y P PS .

Proof. Assume S PM and X,Y P PS , letting s P X ^ Y . It follows that
s “ x‹y for some x P X and y P Y . Thus y‹x P Y ^X, and so s P Y ^X
by Commutativity. We may then conclude that X ^ Y Ď Y ^X, and so
X ^ Y “ Y ^X by symmetry of reasoning.

L3.8 pX ^ Y q ^ Z “ X ^ pY ^ Zq for all S PM and X,Y, Z P PS .

14
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Proof. Assume S PM and X,Y, Z P PS , we may then reason as follows:

s P pX ^ Y q ^ Z iff s “ u ‹ z for some u P X ^ Y and z P Z

iff s “ px ‹ yq ‹ z for some x P X, y P Y, and z P Z

p˚q iff s “ x ‹ py ‹ zq for some x P X, y P Y, and z P Z

iff s “ x ‹ v for some x P X, and v P Y ^ Z

iff s P X ^ pY ^ Zq.

The biconditionals above all hold by definition with the exception of p˚q
which is given by Associativity. Thus pX ^ Y q ^ Z “ X ^ pY ^ Zq.

L3.9 X _X “ X for all S PM where X P PS or X P PS .

Proof. By definition, X _ X “ X YX “ X. Given that X P PS or
X P PS , we know that X “ X, and so X _X “ X as desired.

L3.10 X _ Y “ Y _X for all S PM and X,Y P PS .

Proof. By definition, X_Y “ X Y Y “ Y _X since XYY “ Y YX.

L3.11 pX _ Y q _ Z “ X _ pY _ Zq for all S PM and X,Y, Z P PS .

Proof. Assume S PM and X,Y, Z P PS . We may then reason as follows:

pX _ Y q _ Z “ pX _ Y q Y Z Y rpX _ Y q ^ Zs

“ X Y Y Y Z Y pX ^ Y q Y rpX Y Y Y rX ^ Y sq ^ Zs

p1q “ X Y Y Y Z Y pX ^ Y q Y pX ^ Zq Y pY ^ Zq Y rpX ^ Y q ^ Zs

p2q “ X Y Y Y Z Y pY ^ Zq Y pX ^ Y q Y pX ^ Zq Y rX ^ pY ^ Zqs

p3q “ X Y Y Y Z Y pY ^ Zq Y rX ^ pY Y Z Y rY ^ Zsqs

“ X Y pY _ Zq Y rX ^ pY _ Zqs

“ X _ pY _ Zq.

Whereas both (1) and (3) follow by L3.1, (2) is given by Sum. Thus we
may conclude that pX _ Y q _ Z “ X _ pY _ Zq, as needed.

P3.1 |A| P PS for all M P C and A P pfspL´q.

Proof. Assume M P C and A P pfspL´q. The base case is immediate
from the definitions. Assume for induction that |A|, |B| P PS . We know
by L3.4 that |A^B| “ |A| ^ |B| and by L3.5 that |A_B| “ |A| _ |B|,
where both |A| ^ |B|, |A| _ |B| P PS by L3.2 and L3.3. It follows that
|A_B|, |A^B| P PS . By induction, |A| P PS for all A P pfspL´q.

L3.12 *C pA_Bq ^ pA_ Cq�A_ pB ^ Cq.

Proof. Let S3 “ xS,Yy where S “ Ppta, b, cuq. Since x Y y P S for all
x, y P S, we may conclude that S3 is a state space. Additionally, both
∅Y s “ s for all s P S, and S Y s “ S for all s P S, and so S3 satisfies
Null State and Full State. Observe that xY x “ x, xY y “ y Y x, and
xY pyY zq “ pxY yq Y z for arbitrary x, y, z P S, and so S3 also satisfies
Idempotency, Commutativity, and Associativity. Thus S3 PM.
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Let M3 be an S3-model where |p1|3 “ ttauu, |p2|3 “ ttbuu, and
|p3|3 “ ttcuu, and all other assignments are arbitrary singletons. Given
that S3 satisfies Idempotency, it follows immediately that |pi|3 “ |pi|3 for
all i P N, and so |pi|3 P PS3

for all i P N. Thus M3 P C.
It follows that |p1 _ p2|3 “ |p1|3 _ |p2|3 and |p1 _ p3|3 “ |p1|3 _ |p3|3

by L3.5, and so it follows by L3.4 both |p2 ^ p3|3 “ |p2|3 ^ |p3|3 and
|pp1 _ p2q ^ pp1 _ p3q|3 “ p|p1|3 _ |p2|3q ^ p|p1|3 _ |p3|3q. Again by L3.5,
we know that |p1 _ pp2 ^ p3q|3 “ |p1|3 _ p|p2|3 ^ |p3|3q.

By definition of_ and^, we know that |p1|3_|p2|3 “ ttau, tbu, ta, buu,
|p1|3 _ |p3|3 “ ttau, tcu, ta, cuu, and |p2|3 ^ |p3|3 “ ttb, cuu, and so we
know p|p1|3 _ |p2|3q ^ p|p1|3 _ |p3|3q “ ttau, ta, bu, ta, cu, tb, cu, ta, b, cuu
and |p1|3 _ p|p2|3 ^ |p3|3q “ ttau, tb, cu, ta, b, cuu. We may then observe
that p|p1|3 _ |p2|3q ^ p|p1|3 _ |p3|3q Ę |p1|3 _ p|p2|3 ^ |p3|3q. Given the
Unilateral Semantics, M3 * pp1 _ p2q ^ pp1 _ p3q � p1 _ pp2 ^ p3q,
and so *C pA_Bq ^ pA_ Cq�A_ pB ^ Cq.

L3.13 *C A^ pA_Bq�A.

Proof. Let M3 be as in L3.12. Since |p1 _ p2|3 “ |p1|3 _ |p2|3 by L3.5,
we know that |p1^pp1_ p2q|3 “ |p1|3^p|p1|3_ |p2|3q by L3.4. However,
|p1|3_|p2|3 “ ttau, tbu, ta, buu where |p1|3 “ ttauu, and so it follows that
|p1|3 ^ p|p1|3 _ |p2|3q “ ttau, ta, buu. Since |p1|3 ^ p|p1|3 _ |p2|3q Ę |p1|3,
we know that M3 * p1 ^ pp1 _ p2q� p1 by the Unilateral Semantics,
and so may conclude that *C A^ pA_Bq�A as desired.

L3.14 *C A_ pA^Bq�A.

Proof. Let M3 be defined as in L3.12. Thus |p1^p2|3 “ |p1|3^|p2|3 by
L3.4, and so |p1 _ pp1 ^ p2q|3 “ |p1|3 _ p|p1|3 ^ |p2|3q by L3.5. However,
|p1|3 ^ |p2|3 “ tta, buu, and since |p1|3 “ ttauu, we may conclude that
|p1|3 _ p|p1|3 ^ |p2|3q “ ttau, ta, buu. Thus |p1|3 ^ p|p1|3 _ |p2|3q Ę |p1|3,
and so we know that M3 * p1 _ pp1 ^ p2q � p1 by the Unilateral
Semantics. Thus it follows that *C A_ pA^Bq�A as desired.

L3.15 *C A^ pA_Bq « A.

Proof. Follows from L3.13.

L3.16 *C A_ pA^Bq « A

Proof. Follows from L3.14.

L3.17 *C A_ pB ^ Cq « pA_Bq ^ pA_ Cq.

Proof. Follows from L3.12.

L3.18 X ^ pX _ Y q ‰ X for some S PM and X,Y P PS .

Proof. Given L3.15, M * p1 ^ pp1 _ p2q « p1 for some M P CS , and so
|p1 ^ pp1 _ p2q| ‰ |p1| by the Unilateral Semantics. Thus it follows
by L3.4 and L3.5 that |p1| ^ p|p1| _ |p2|q ‰ |p1|. Since p1, p2 P pfspL´q,
we know that |p1|, |p2| P PS by P3.1, and so we may conclude the proof
by existentially generalising on |p1|, |p2| and S PM.
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L3.19 X _ pX ^ Y q ‰ X for some S PM and X,Y P PS .

Proof. Given L3.16, M * p1 _ pp1 ^ p2q « p1 for some M P CS , and so
|p1 _ pp1 ^ p2q| ‰ |p1| by the Unilateral Semantics. Thus it follows
by L3.4 and L3.5 that |p1| _ p|p1| ^ |p2|q ‰ |p1|. Since p1, p2 P pfspL´q,
we know that |p1|, |p2| P PS by P3.1, and so we may conclude the proof
by existentially generalising on |p1|, |p2| and S PM.

L3.20 For all S PM and X,Y, U, V P PS , if X Ď Y and U Ď V , then X ^ U Ď Y ^ V .

Proof. Let S PM and X,Y, U, V P PS , and assume X Ď Y and U Ď V .
Choose some s P X _ U . By Sum, s P X Y U Y pX ^ Uq. If s P X Y U ,
then s P Y Y V , and so s P Y Y V Y pX ^ V q. If instead s P X ^U , then
s “ x ‹ u for some x P X and u P U . It follows that x P Y and u P V ,
and so s P Y ^ V . Thus s P Y Y V Y pY ^ V q in either case, and so
s P Y _ V by Sum. We may then conclude that X _ U Ď Y _ V .

L3.21 X _ pY ^Zq ‰ pX _ Y q ^ pX _Zq for some S PM and X,Y, Z P PS .

Proof. Given L3.17 above, we know that there is some M P CS where
M * p1 _ pp2 ^ p3q « pp1 _ p2q ^ pp1 _ p3q, and so it follows from the
Unilateral Semantics that |p1 _ pp2 ^ p3q| ‰ |pp1 _ p2q ^ pp1 _ p3q|.
Thus |p1| _ p|p2| ^ |p3|q ‰ p|p1| _ |p2|q ^ p|p1| _ |p3|q by L3.4 and L3.5.
Since p1, p2, p3 P pfspL´q, we know that |p1|, |p2|, |p3| P PS by P3.1, and
so we may conclude the proof by existential generalisation.

L3.22 X ^ pY _ Zq “ pX ^ Y q _ pX ^ Zq for all S PM and X,Y, Z P PS .

Proof. Assume S PM and X,Y, Z P PS . We may then reason as follows:

X ^ pY _ Zq “1 X ^ rY Y Z Y pY ^ Zqs

“2 pX ^ Y q Y pX ^ Zq Y rX ^ pY ^ Zqs

“3 pX ^ Y q Y pX ^ Zq Y rpX ^Xq ^ pY ^ Zqs

“4 pX ^ Y q Y pX ^ Zq Y rpX ^ Y q ^ pX ^ Zqs

“5 pX ^ Y q _ pX ^ Zq.

Whereas both (1) and (5) are given by Sum, (2) follows from L3.1 and
(3) holds by L2.13. We may then justify (4) by appeal to L2.12 and
L2.13. Thus X ^ pY _ Zq “ pX ^ Y q _ pX ^ Zq.

4 Soundness

Given the semantics above, we may now prove that UGSN is sound over C by
induction on the number of applications of the meta-rules as follows:

T1 (Soundness) If Σ $ugsn ϕ, then Σ (C ϕ.

Proof. The proof goes by a routine induction, drawing on L4.1 – L4.18 in
addition to standard validities for propositional logic.

It follows from L3.15 –L3.17 and Soundness that #Abs1, #Abs2, and
#Dist are not theorems of UGSN. It remains to prove L4.1 – L4.18.
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L4.1 (C A�A_B and (C B �A_B.

Proof. Let M P C and A,B P pfspL´q. Thus |A _ B| “ |A| _ |B| by
L3.5, where |A| _ |B| “ |A| Y |B| Y |A ^ B| by Sum. It follows that
|A| Ď |A _ B| and |B| Ď |A _ B|, and so both M ( A � A _ B and
M ( B �A_B by the semantics.

L4.2 (C A�A^A and (C A^A�A.

Proof. Let M P C and A P pfspL´q. By L3.4, |A^A| “ |A|^|A|, where
|A| P PS by P3.1, and so |A| ^ |A| “ |A| by L2.13. Thus |A^A| “ |A|,
and so M ( A�A^A and M ( A^A�A.

L4.3 (C A^ pB ^ Cq� pA^Bq ^ C and (C pA^Bq ^ C �A^ pB ^ Cq.

Proof. Letting M P C and A,B,C P pfspL´q, it follows by P3.1 that
|A|, |B|, |C| P PS . Thus we may argue as follows:

|A^ pB ^ Cq| “1 |A| ^ p|B| ^ |C|q

“2 p|A| ^ |B|q ^ |C|

“3 |pA^Bq ^ C|.

Whereas both (1) and (3) follow from L3.4, (2) is given by L3.8. Thus
|A^ pB^Cq| “ |pA^Bq ^C|, and so M ( A^ pB^Cq� pA^Bq ^C
and M ( pA^Bq ^ C �A^ pB ^ Cq.

L4.4 (C A^B �B ^A.

Proof. Letting M P C and A,B P pfspL´q, it follows by P3.1 that
|A|, |B| P PS . Thus we may argue as follows:

|A^B| “1 |A| ^ |B|

“2 |B| ^ |A|

“3 |B ^A|.

Whereas both (1) and (3) follow from L3.4, (2) is given by L3.7. Thus
|A^B| “ |B ^A|, and so M ( A^B �B ^A.

L4.5 A�B,C �D (C A^ C �B ^D.

Proof. Assume M ( A � B and M ( C � D for some M P C and
A,B,C,D P pfspL´q. Thus |A| Ď |B| and |C| Ď |D|, where we know by
P3.1 that |A|, |B|, |C|, |D| P PS . By L3.20, |A| ^ |C| Ď |B| ^ |D|, and
so |A^ C| Ď |B ^D| by L3.4. Thus M ( A^ C �B ^D.

L4.6 A�B,B � C (C A� C.

Proof. Assume M ( A � B and M ( B � C for some M P C and
A,B,C P pfspL´q. Thus |A| Ď |B| and |B| Ď |C|, and so |A| Ď |C|. We
may then conclude that M ( A�B.

L4.7 (C A� T .
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Proof. Let M P C and A P pfspL´q. By P3.1, |A| P PS , and so |A| Ď S.
Thus, |A| Ď |T | since |T | “ S, and so M ( A� T .

L4.8 (C $

J́

.

Proof. Immediate from the semantics.

L4.9 (C $V.

Proof. Immediate from the semantics.

L4.10 (C

J́

^A�A and (C A�

J́

^A.

Proof. Let M P C and A P pfspL´q. We may then argue as follows:

s P |

J́

^A| iff s “ ˝ ‹ y for some y P |A|

p˚q iff s “ y for some y P |A|

iff s P |A|.

Given that p˚q holds by Null State, it follows that |

J́

^A| “ |A|, and so
both M (

J́

^A�A and M ( A�

J́

^A.

L4.11 (C V ^A� V and (C V � V ^A.

Proof. Let M P C and A P pfspL´q. We may then argue as follows:

s P |V ^A| iff s “ ‚ ‹ y for some y P |A|

p˚q iff s “ ‚

iff s P |V|.

Given that p˚q holds by Full State, it follows that |V ^A| “ |V|, and so
both M ( V ^A� V and M ( V � V ^A.

L4.12 $A (C A� K.

Proof. Assume that M ( $A for some M P C. It follows that |A| “ tsu
for some s P S, where |K| “ ∅, and so |A| Ę |K|. Thus M * A�K, and
so M ( A�| K.

L4.13 A « B (C $AØ $B.

Proof. Let M P C and assume for contraposition that M ( $A and
M * $B. It follows that |A| “ tsu for some s P S where |B| ‰ tsu,
and so |A| ‰ |B|. Thus either |A| Ę |B| or |B| Ę |A|, and so either
M * A�B or M * B �B. We may then conclude that M * A « B,
where the same holds if M * $A and M ( $B.

L4.14 $A, $B (C $pA^Bq.

Proof. Assume M ( $A and M ( $B for some M P C. It follows that
|A| “ tsu and |B| “ ttu for some s, t P S, where we know by L3.4 that
|A ^ B| “ tx ‹ y : x P |A| and y P |B|u. Thus |A^ B| “ ts ‹ tu, and so
M ( $pA^Bq.
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L4.15 $A,B �A (C pA�Bq _ pB � Kq.

Proof. Let M P C, and assume M ( $A and M ( B � A. It follows
that |A| “ tsu for some s P S, and |B| Ď |A|, and so |B| Ď tsu. Thus
either |B| “ tsu or |B| “ ∅, and so either |A| Ď |B| or |B| Ď |K|. In
either case, M ( pA�Bq _ pB � Kq.

L4.16 $A,A� C _D (C pA� Cq _ pA�Dq _ pA� C ^Dq.

Proof. Let M P C, and assume M ( $A and M ( A � C _D. Thus
|A| “ tsu for some s P S, and |A| Ď |C_D|, where we know by L3.5 and
Sum that |C _D| “ |C| Y |D| Y |C ^D|, and so s P |C| Y |D| Y |C ^D|.
Given that |A| “ tsu, either |A| Ď |C| or |A| Ď |D| or |A| Ď |C ^ D|,
and so M ( A � C or M ( A � D or M ( A � C ^ D. Thus
M ( pA� Cq _ pA�Dq _ pA� C ^Dq.

L4.17 If Γ (C $pÑ rpp�Aq Ñ pp�Bqs where p P L does not occur in A,B
or any γ P Γ, then Γ (C A�B.

Proof. Let p P L be an arbitrary sentence letter which does not occur in
A,B or any γ P Γ. Assume for contraposition that Γ *C A� B. Thus
there is some M P C such that M ( γ for all γ P Γ, but M * A � B.
It follows that |A| Ę |B|, and so there is some s P |A| such that s R |B|.
Let Mu differ at most from M by setting |p|u “ tsu. Given that p does
not occur in A or B, we may conclude that |A| “ |A|u and |B| “ |B|u,
and so both |p|u Ď |A|u but |p|u Ę |B|u given the above. Thus Mu ( $p
where Mu ( p�A but Mu * p�B, and so Mu * pp�Aq Ñ pp�Bq
and Mu * $p Ñ rpp � Aq Ñ pp � Bqs. Since p does not occur in any
γ P Γ, and Mu differs from M at most in p, it follows that Mu ( γ for
all γ P Γ. Thus Γ *C $pÑ rpp�Aq Ñ pp�Bqs.

L4.18 If Γ, rpA�| Kq ^ pA�B ^ Cqs Ñ r$p^ $q ^ pp�Bq ^ pq � Cq ^ pp^ q �Aqs (C ϕ
for distinct p, q P L which do not occur in ϕ,A,B or any γ P Γ, then Γ (C ϕ.

Proof. Choose some distinct p, q P L which do not occur in ϕ,A,B or
any γ P Γ, and assume Γ *C ϕ for contraposition. It follows that there is
some M P C where M ( γ for all γ P Γ but M * ϕ. Of course, either:
(a) M ( pA�| Kq ^ pA � B ^ Cq; or (b) M * pA�| Kq ^ pA � B ^ Cq.
Assume (b) to start. It follows that:

M ( rpA�| Kq ^ pA�B ^ Cqs Ñ r$p^ $q ^ pp�Bq ^ pq � Cq ^ pp^ q �Aqs.

Given that M ( γ for all γ P Γ, the antecedent of the claim to be
proven is false. Assume (a) instead: M ( pA�| Kq ^ pA�B ^ Cq. Thus
M * A�K and M ( A�B ^C, and so |A| Ę ∅ and |A| Ď |B ^C|. It
follows that there is some a P |A|, where a P |B ^ C|, and so a “ b ‹ c
for some b P |B| and c P |C|. Let Mu differ at most from M by setting
|p|u “ tbu and |q|u “ tcu, and so Mu ( $p and Mu ( $q. Since p and q
do not occur in A,B, ϕ or any γ P Γ, we know that Mu * ϕ and Mu ( γ
for all γ P Γ. Additionally, |A| “ |A|u, |B| “ |B|u, and |C| “ |C|u, and
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so |p|u Ď |B|u and |q|u Ď |C|u. Thus Mu ( p � B and Mu ( q � C.
Given L3.4, we may argue as follows:

|p^ q|u “ tx ‹ y : x P |p|u and y P |q|uu

“ tb ‹ cu

“ tau

Since a P |A| “ |A|u, we know |p^ q|u Ď |A|u, and so Mu ( p^ q � A.
Thus Mu ( $p^ $q ^ pp�Bq ^ pq � Cq ^ pp^ q �Aq, and so trivially:

Mu ( rpA�| Kq ^ pA�B ^ Cqs Ñ r$p^ $q ^ pp�Bq ^ pq � Cq ^ pp^ q �Aqs.

Given that Mu * ϕ where Mu ( γ for all γ P Γ, it follows that the
antecedent of the claim to be proven is false. Thus the antecedent is false
whether M ( pA�| Kq ^ pA � B ^ Cq or M * pA�| Kq ^ pA � B ^ Cq.
The claim to be proven then follows by discharge and contraposition.

5 Completeness

Let L` be a language like L´ but with L` “ LYQYW in place of L where
Q “ tqi : i P Nu and W “

Ť

iPN
tri, siu. Keeping the formation rules the same

as before, let pfspL`q be the set of pfs recursively generated from L` rather
than L, where wfspL`q is then generated from pfspL`q via atomspL`q as
above. In defining $ugsn, we may then permit instances of the axioms and
rules of inference included in UGSN to draw upon both pfspL`q and wfspL`q.
Whereas in §3 and §4 we were concerned to evaluate truth relative to models in
C, we must now extend consideration to all wfspL`q. Letting M “ xS, ‹, | ¨ |y
be a unilateral S-model of L` just in case S PM where S “ xS, ‹y and |p| P PS
for all p P L`, we may take C`S to be the class of all S-models of L`, where
C` “

Ť

tC`S : S P Mu. We are now in a position to prove that UGSN is
complete over C by first showing that UGSN is complete over C`.

T2 (Completeness) If Σ (C ϕ, then Σ $ugsn ϕ.

Proof. The proof that UGSN is complete over C goes by contraposition. Assume
for discharge that Σ &ugsn θ for Σ Y tθu Ď wfspL´q. In order to prove that
Σ *C θ, I will construct a Henkin model MΓΣ,θ

where MΓΣ,θ
( σ for all σ P Σ

but MΓΣ,θ
* θ for a carefully chosen set of wfss ΓΣ,θ Ď wfspL`q. With this

aim in mind, consider the following definitions:

Maximality: Γ is maximal iff for all ϕ P wfspL`q, either ϕ P Γ or  ϕ P Γ.

Consistency: Γ is consistent iff &ugsn  pγ1 ^ . . .^ γnq for any tγ1, . . . , γnu Ď Γ.

Saturated: Γ is saturated iff for all A,B P pfspL´q, there is some q P Q not

occurring in A or B where rpq �Aq Ñ pq �Bqs Ñ pA�Bq P Γ.

Conjunctive: Γ is conjunctive iff whenever A�| K, A�B ^ C P Γ, then there are

some X,Y P pfspL`q where $X, $Y,X �B, Y � C,X ^ Y �A P Γ.
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�-Consistent: Γ is �-consistent iff Γ is saturated, conjunctive, and consistent.

Given the definitions above and any ΣY tθu Ď wfspL´q where Σ &ugsn θ, we
may construct a maximal �-consistent set ΓΣ,θ, proving the following:

L5.6: For all ΣY tθu Ď wfspL´q, if Σ &ugsn θ, then ΓΣ,θ Ď wfspL`q is maximal

�-consistent where Σ Ď ΓΣ,θ but θ R ΓΣ,θ.

Given any maximal �-consistent set ΓΣ,θ, I will show how to construct a Henkin
model MΓΣ,θ

. Letting MR be the L´-reduct of M P C`, we may prove:

L5.10: If ΓΣ,θ is maximal �-consistent, then MΓΣ,θ
P C`.

L5.11: If M P C`, then MR P C where MR ( ϕ iff M ( ϕ for all ϕ P wfspL´q.

P5.1: If Σ &ugsn θ for ΣY tθu Ď wfspL´q, then χ P ΓΣ,θ iff MΓΣ,θ
( χ for all χ P wfspL´q.

Given the assumption that Σ &ugsn θ for Σ Y tθu Ď wfspL´q, it follows by
L5.6 that ΓΣ,θ is maximal �-consistent where Σ Ď ΓΣ,θ but θ R ΓΣ,θ. By
P5.1, MΓΣ,θ

( σ for all σ P Σ where MΓΣ,θ
* θ. Given that MΓΣ,θ

P C` by

L5.10, it follows from L5.11 that MR
ΓΣ,θ

P C where MR
ΓΣ,θ

( ϕ iff MΓΣ,θ
( ϕ

for all ϕ P wfspL´q. Thus MR
ΓΣ,θ

( σ for all σ P Σ where MR
ΓΣ,θ

* θ, and so
Σ *C θ. By discharge and contraposition, we may conclude that if Σ (C θ then
Σ $ugsn θ. It remains to establish each of the results stated above.

In what follows, I will prove a number of preliminary results, culminating
in proofs of the lemmas and propositions cited above.

L5.1 If Γ $ugsn ϕ and Γ $ugsn  ϕ, then Γ is inconsistent.

Proof. Standard.

L5.2 If Γ is a maximal consistent subset of wfspL`q, then for all ϕ P wfspL`q:
(a) ϕ P Γ if and only if  ϕ R Γ;
(b) Γ $ugsn ϕ if and only if ϕ P Γ;
(c) ϕ_ ψ P Γ if and only if ϕ P Γ or ψ P Γ;
(d) ϕ^ ψ P Γ if and only if ϕ P Γ and ψ P Γ.

Proof. Standard.

L5.3 If X Y Y is inconsistent for Y ‰ ∅, then X $ugsn  pγ1 ^ . . .^ γnq for
some tγ1, . . . , γnu Ď Y .

Proof. Standard.

Given any set of sentences Σ Y tθu Ď wfspL´q for which Σ &ugsn θ, we
may construct a maximal consistent set ΓΣ,θ where Σ Ď ΓΣ,θ but θ R ΓΣ,θ.
The construction will proceed in three stages. First we define a saturated set
∆Σ,θ where ΣY t θu Ď ∆Σ,θ, showing that ∆Σ,θ is consistent. We then move
to extend ∆Σ,θ to a conjunctive set ΩΣ,θ, showing that ΩΣ,θ is also consistent.
Lastly, we define a maximal consistent extension ΓΣ,θ of ∆Σ,θ in the usual
manner. More specifically, consider the following definitions:
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α-Ordering: Let atomspL`q “ tαi : i P Nu.

α-Witnesses: δi “ rpq
‹
i �Aq Ñ pq‹i �Bqs Ñ pA�Bq where q‹i is the lowest indexed

member of Q not occurring in A,B, or δj for any j ă i.

Saturation: Let ∆0
Σ,θ “ ΣY t θu, ∆n`1

Σ,θ “ ∆n
Σ,θ Y tδn`1u Y t$q

‹
n`1u, and ∆Σ,θ “

Ť

nPN
∆n

Σ,θ.

Given these definitions, we may move to establish the first consistency proof.

L5.4 For all ΣY tθu Ď wfspL´q, if Σ &ugsn θ, then ∆Σ,θ is consistent.

Proof. The proof goes by induction, showing that ∆n
Σ,θ is consistent

for all n P N. Let Σ Y tθu Ď wfspL´q and assume for discharge that
Σ &ugsn θ. Assume for reductio that ∆0

Σ,θ is inconsistent. It follows that

Σ $ugsn  θ by L5.3, contradicting the above. Thus ∆0
Σ,θ is consistent

by reductio.
Assume for induction that ∆n

Σ,θ is consistent. Assume for reductio

that ∆n`1
Σ,θ is inconsistent. Since ∆n`1

Σ,θ “ ∆n
Σ,θ Y tδn`1u Y t$q

‹
n`1u, it

follows by L5.3 that ∆n
Σ,θ $ugsn  pδn`1^$q‹n`1q. Consider the following:

∆n
Σ,θ $ugsn  pδn`1 ^ $q‹n`1q

$ugsn  rprpq‹n`1 �Aq Ñ pq‹n`1 �Bqs Ñ rA�Bsq ^ $q‹n`1s

$ugsn  $q‹n`1 _ prpq
‹
n`1 �Aq Ñ pq‹n`1 �Bqs ^ rA�| Bsq

$ugsn p$q‹n`1 Ñ rpq‹n`1 �Aq Ñ pq‹n`1 �Bqsq ^ p$q
‹
n`1 Ñ rA�| Bsq

$ugsn $q‹n`1 Ñ rA�| Bs

$ugsn $q‹n`1 Ñ rpq‹n`1 �Aq Ñ pq‹n`1 �Bqs

p˚q $ugsn A�B

$ugsn  $q‹n`1

The above follows by propositional logic with the exception of p˚q which
follows by the SP6. Thus we may conclude that ∆n

Σ,θ $ugsn  $q‹n`1

where q‹n`1 is the lowest indexed member of Q not occurring in A,B, or
δm for any m ă n` 1. It follows by AR2 that ∆n

Σ,θrq‹
n{q

‹
n`1s

$ugsn  $q‹n,

and so ∆n
Σ,θ $ugsn  $q‹n since q‹n`1 does not occur in ∆n

Σ,θ. However,
by construction $q‹n P ∆n

Σ,θ, and so ∆n
Σ,θ $ugsn $q‹n. Thus ∆n

Σ,θ is

inconsistent by L5.1, contradicting the above. By reductio, ∆n`1
Σ,θ is

consistent, and so ∆Σ,θ is consistent by induction.

Having proven that ∆Σ,θ is consistent for any non-theorem θ, we may now
proceed to construct ΩΣ,θ from ∆Σ,θ as follows:

^-Atoms: Let atoms^pL`q “ tA�B ^ C : A,B,C P pfspL`qu.

β-Ordering: Let atoms^pL`q “ tβi : i P Nu.

β-Witnesses: ωi “ r$A^ pA�B ^ Cqs Ñ r$r‹i ^ $s‹i ^ pr
‹
i �Bq ^ ps

‹
i � Cq ^ pr

‹
i ^ s

‹
i « Aqs

where r‹i and s‹i are the lowest indexed member of W not occurring

in A,B,C, or ωj for any j ă i.
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Completion: Let Ω0
Σ,θ “ ∆Σ,θ, Ωn`1

Σ,θ “ ΩnΣ,θ Y tωn`1u, and ΩΣ,θ “
Ť

nPN
ΩnΣ,θ.

We may now move to show that ΩΣ,θ is also consistent.

L5.5 For all ΣY tθu Ď wfspL´q, if Σ &ugsn θ, then ΩΣ,θ is consistent.

Proof. Let ΣY tθu Ď wfspL´q and assume for discharge that Σ &ugsn θ.
It follows by L5.4 that ∆Σ,θ is consistent, establishing the base case.

Assume for induction that ΩnΣ,θ is consistent. Assume for reductio that

Ωn`1
Σ,θ is inconsistent. Since Ωn`1

Σ,θ “ ΩnΣ,θYtωn`1u, it follows by L5.3 that
ΩnΣ,θ $ugsn  ωn`1, and so ΩnΣ,θ $ugsn  θ Ñ  ωn`1. By contraposition,

ΩnΣ,θ $ugsn ωn`1 Ñ θ, and so ΩnΣ,θ Y tωn`1u $ugsn θ. Since θ P wfspL´q,
neither r‹n`1 nor s‹n`1 occur in θ. Additionally, WX∆Σ,θ “ ∅, and so
neither r‹n`1 nor s‹n`1 are in Ω0

Σ,θ. Since by construction r‹n`1 and s‹n`1

are the lowest indexed member of W not occurring in ωj for any j ă i,
we may conclude that neither r‹n`1 nor s‹n`1 are in ΩnΣ,θ. It follows from
ΩnΣ,θYtωn`1u $ugsn θ that ΩnΣ,θ $ugsn θ by SP7. However, we also know
that  θ P ∆Σ,θ Ď ΩΣ,θ, and so Ωn

Σ,θ $ugsn  θ. Thus by L5.1, Ωn
Σ,θ is

inconsistent, contradicting the above. By reductio, Ωn`1
Σ,θ is consistent,

and so ΩΣ,θ is consistent by induction.

It remains to identify a maximal consistent extension of ΩΣ,θ. In particular,
consider the following Henkin construction:

ϕ-Ordering: Let wfspL`q “ tϕn : n P Nu.
Γ0

Σ,θ “ ΩΣ,θ

Γn`1
Σ,θ “

#

ΓnΣ,θ Y tϕn`1u if ΓnΣ,θ Y tϕn`1u is consistent

ΓnΣ,θ Y t ϕn`1u otherwise.

ΓΣ,θ “
ď

nPN
ΓnΣ,θ.

We now move to show that ΓΣ,θ is maximal �-consistent and includes ΣYt θu.

L5.6 For all ΣY tθu Ď wfspL´q, if Σ &ugsn θ, then ΓΣ,θ is maximal
�-consistent where Σ Ď ΓΣ,θ but θ R ΓΣ,θ.

Proof. Let Σ Y tθu Ď wfspL´q and assume Σ &ugsn θ for discharge.
By L5.5, ΩΣ,θ is consistent, and so Γ0

Σ,θ is consistent. Assume for
induction that ΓnΣ,θ is consistent. If ΓnΣ,θ Y tϕn`1u is consistent, then

Γn`1
Σ,θ is consistent. Assume instead that ΓnΣ,θ Y tϕn`1u is inconsistent.

Thus ΓnΣ,θ $ugsn  ϕn`1 follows by L5.3, where Γn`1
Σ,θ “ ΓΣ,θ Y t ϕn`1u.

Assume for reductio that Γn`1
Σ,θ is inconsistent. Again by L5.3 it follows

that ΓnΣ,θ $ugsn   ϕn`1, and so ΓnΣ,θ is inconsistent by L5.1. By

reductio, Γn`1
Σ,θ is consistent. Thus ΓΣ,θ is consistent by induction.

In order to show that ΓΣ,θ is maximal, let ϕ P wfspL`q be arbitrary.
It follows that ϕ “ ϕn for some n P N. Thus either ΓnΣ,θ “ Γn´1

Σ,θ Y tϕnu

or ΓnΣ,θ “ Γn´1
Σ,θ Y t ϕnu, and so either ϕ P ΓnΣ,θ or  ϕ P ΓnΣ,θ. Since

ΓnΣ,θ Ď ΓΣ,θ where ϕ was arbitrary, ΓΣ,θ is maximal.
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We next show that ΓΣ,θ is saturated. Let A,B P pfspL´q. It follows
that A�B “ α for some α P atomspL`q. By construction, there is some
δ P ∆Σ,θ where δ “ rpq �Aq Ñ pq �Bqs Ñ pA�Bq and q is the lowest
indexed member of Q not occurring in A or B. Since ∆Σ,θ Ď ΩΣ,θ Ď ΓΣ,θ

and A,B P pfspL´q were arbitrary, it follows that ΓΣ,θ is saturated.
Lastly, we show that ΓΣ,θ is conjunctive. Assume for discharge that

$A,A�B^C P ΓΣ,θ. It follows that $A^pA�B^Cq P ΓΣ,θ by L5.2d,
and so ΓΣ,θ $ugsn $A^pA�B^Cq. We also know that A�B^C “ βi
for some βi P atoms

^pL`q. By construction, ωi P ΩΣ,θ Ď ΓΣ,θ, where:

ωi “ r$A^ pA�B ^ Cqs Ñ r$r‹ ^ $s‹ ^ pr‹ �Bq ^ ps‹ � Cq ^ pr‹ ^ s‹ �Aqs.

Thus it follows that ΓΣ,θ $ugsn ωi. Given the above, we may then
conclude that ΓΣ,θ $ugsn $r‹^ $s‹^ pr‹�Bq ^ ps‹�Cq ^ pr‹^ s‹�Aq.
By existentially generalising on r‹ and s‹, there are some X,Y P pfspL`q
where Γ $ugsn $X, Γ $ugsn $Y, Γ $ugsn X �B, Γ $ugsn Y � C, as well
as Γ $ugsn X ^Y �A. By L5.2b, there are some X,Y P pfspL`q where
$X, $Y , X �B, Y � C, X ^ Y �A P Γ. Thus ΓΣ,θ is conjunctive.

Having established that ΓΣ,θ is maximal, consistent, saturated, and
conjunctive, we may conclude that ΓΣ,θ is maximal�-consistent as needed.
Moreover, ΣYt θu Ď ΓΣ,θ since ΣYt θu Ď ∆0

Σ,θ Ď ∆Σ,θ Ď ΩΣ,θ Ď ΓΣ,θ.
Thus by L5.2a, θ R ΓΣ,θ, and so we may conclude by discharge.

We are now in a position to construct a Henkin model MΓ P C`, where Γ
is any maximal �-consistent subset of wfspL`q. Consider the following:

Γ-Class: rAsΓ “ tX : A « X P Γu.

Γ-States: SΓ “ trAsΓ : $A P Γu.

Γ-Fusion: rAsΓ ‹ rBsΓ “ rA^BsΓ.

Γ-Valuation: |l|Γ “ trAsΓ : $A P Γ and A� l P Γu for all l P L`.

Γ-Model: MΓ “ xSΓ, ‹, | ¨ |Γy.

Given this construction, I will show that MΓ is indeed a S-model of L`,
beginning with a few preliminary results.

L5.7 If Γ is maximal �-consistent and A,B P pfspL`q, then rAsΓ “ rBsΓ iff A « B P Γ.

Proof. Let A,B P pfspL`q, and assume rAsΓ “ rBsΓ. By E1 we know
that $ugsn B « B, and so B « B P Γ by L5.2b. Thus B P rBsΓ. Given
the identity above, B P rAsΓ, and so A « B P Γ by definition.

Assume instead that A « B P Γ. We may then argue as follows:

X P rAsΓ iff A « X P Γ

iff Γ $ugsn A « X

p˚q iff Γ $ugsn B « X

iff B « X P Γ

iff X P rBsΓ.
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The identities above all hold by definition and L5.2b, with the exception
of p˚q which follows from GA9. Thus rAsΓ “ rBsΓ. Given the above, we
may conclude that rAsΓ “ rBsΓ just in case A « B P Γ.

L5.8 If Γ is maximal �-consistent, then x ‹ y P SΓ for all x, y P SΓ.

Proof. Assume that Γ is maximal �-consistent. In order to show that
‹ is well-defined over SΓ, let a1, a2, b1, b2 P SΓ, and assume that both
a1 “ a2 and b1 “ b2. By definition, a1 “ rA1sΓ, a2 “ rA2sΓ, b1 “ rB1sΓ,
and b2 “ rB2sΓ for some A1, A2, B1, B2 P pfspL`q. Thus it follows that
rA1sΓ “ rA2sΓ and rB1sΓ “ rB2sΓ, and so A1 « A2 P Γ and B1 « B2 P Γ
by L5.7. By GA8, we know that Γ $ugsn A1 ^ B1 « A2 ^ B2, and
so A1 ^ B1 « A2 ^ B2 P Γ by L5.2b. Again by L5.7, we know that
rA1 ^ B1sΓ “ rA2 ^ B2sΓ, and so rA1sΓ ‹ rB1sΓ “ rA2sΓ ‹ rB2sΓ by
definition. Thus a1 ‹ b1 “ a2 ‹ b2, and so ‹ is well-defined.

Let x, y P SΓ by arbitrary. It follows that x “ rAsΓ where $A P Γ,
and similarly y “ rBsΓ where $B P Γ. Thus Γ $ugsn $pA ^ Bq follows
from SP3, and so $pA^Bq P Γ by L5.2b. We may then conclude that
rA ^ BsΓ P SΓ. However, rA ^ BsΓ “ rAsΓ ‹ rBsΓ, and so x ‹ y P SΓ.
Thus we may conclude that x ‹ y P SΓ for all x, y P SΓ.

L5.9 If Γ is maximal �-consistent, then MΓ P C`.

Proof. Assume Γ is maximal �-consistent. It follows by L5.8 that
xSΓ, ‹y is a state space. We must show that xSΓ, ‹y P M by satisfying
Null State, Full State, Idempotency, Commutativity, and Associativity.

Observe that $ugsn $
J́

and $ugsn $V follow from VF1 and VF2,
respectively. Thus Γ $ugsn $

J́

and Γ $ugsn $V, and so $

J́

, $V P Γ by
L5.2b. By Γ-States, both r

J́

sΓ, rVsΓ P SΓ. Letting x P SΓ, it follows by
Γ-States that x “ rAsΓ for some A P pfspL`q where $A P Γ, and so:

r

J́

sΓ ‹ x “ r

J́

sΓ ‹ rAsΓ

“ r

J́

^AsΓ

p:q “ rAsΓ

“ x.

rVsΓ ‹ x “ rVsΓ ‹ rAsΓ
“ rV ^AsΓ

p;q “ rVsΓ.

The identities above hold by definition or assumption with the exception
of p:q and p;q which follow by L5.7 from E4 and E6, respectively. Since
x P SΓ was arbitrary, we may conclude that there is some ˝ P SΓ where
˝ ‹ x “ x for all x P SΓ, and some ‚ P SΓ where ‚ ‹ x “ ‚ for all x P SΓ.
Thus xSΓ, ‹y satisfies both Null State and Full State.

Letting x P SΓ. It follows that x “ rAsΓ for some A P pfspL`q.
Recall that Γ $ugsn A^A « A by E4, and so A^A « A P Γ by L5.2b.
Thus rA^AsΓ “ rAsΓ by L5.7, and so rAsΓ ‹ rAsΓ “ rAsΓ. Equivalently,
x ‹ x “ x. Since x P SΓ was arbitrary, xSΓ, ‹y satisfies Idempotency.

Let x, y P SΓ. It follows that x “ rAsΓ and y “ rBsΓ for some
A,B P pfspL`q. Recall that Γ $ugsn A ^ B « B ^ A by E10, and so
A^B « B ^A P Γ by L5.2b. Thus rA^BsΓ “ rB ^AsΓ by L5.7. By
definition, rAsΓ ‹ rBsΓ “ rBsΓ ‹ rAsΓ, and so x ‹ y “ y ‹x. Since x, y P SΓ

were arbitrary, it follows that xSΓ, ‹y satisfies Commutativity.
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Let x, y, z P SΓ. Thus x “ rAsΓ, y “ rBsΓ, and z “ rCsΓ for some
A,B,C P pfspL`q. Recall that Γ $ugsn A ^ pB ^ Cq « pA ^ Bq ^ C
by E12, and so A ^ pB ^ Cq « pA ^ Bq ^ C P Γ by L5.2b. Thus
rA^ pB ^ CqsΓ “ rpA^Bq ^ CsΓ by L5.7. Consider the following:

x ‹ py ‹ zq “ rAsΓ ‹ prBsΓ ‹ rCsΓq

“ rA^ pB ^ CqsΓ

p˚q “ rpA^Bq ^ CsΓ

“ prAsΓ ‹ rBsΓq ‹ rCsΓ.

“ px ‹ yq ‹ z.

The identities above all follow by definition or assumption with the
exception of p˚q which was already established. Since x, y, z P SΓ were
arbitrary, xSΓ, ‹y satisfies Associativity as desired.

Given the results above, xSΓ, ‹y PM. We now show that |p|Γ P PSΓ

for all p P L`. Letting p P L`, we know that |p|Γ Ď SΓ, and so |p|Γ Ď |p|Γ.
In order to establish the converse inclusion, let s P |p|Γ. It follows that
s “ x ‹ y for some x, y P |p|Γ, and so x “ rXsΓ and y “ rY sΓ for some
X,Y P pfspL`q where both $X, $Y P Γ and X � p, Y � p P Γ. By SP3,
Γ $ugsn $pX ^ Y q, and so $pX ^ Y q P Γ by L5.2b. Since we also know
that Γ $ugsn X ^ Y � p^ p by GA8, it follows that Γ $ugsn X ^ Y � p
by GA4. Again by L5.2b, X ^ Y � p P Γ, and so rX ^ Y sΓ P |p|Γ by
Γ-Valuation. By definition, rX ^ Y sΓ “ rXsΓ ‹ rY sΓ. It follows that
x ‹ y P |p|Γ, and so s P |p|Γ. Since s P |p|Γ was arbitrary, |p|Γ Ď |p|Γ.
Given the above, |p|Γ “ |p|Γ, and so |p|Γ P PSΓ where SΓ “ xSΓ, ‹y. Since
p P L` was arbitrary and xSΓ, ‹y PM, and so MΓ P C`.

L5.10 If Γ is maximal �-consistent, then for all B P pfspL`q
|B|Γ “ trAsΓ : $A P Γ and A�B P Γu.

Proof. Assuming that Γ is maximal �-consistent, the proof proceeds
by induction on complexity. Assume to start that B P pfspL`q where
comppBq “ 0. It follows that either: (1) B “

J́

; (2) B “ K; (3) B “ T ;
(4) B “ V ; or (5) B “ p for some p P L`. Since (5) is given immediately
by Γ-Valuation, we may restrict consideration to (1) – (4).

Case 1: Assume B “

J́

. We know that |

J́

|Γ “ t˝u, where $ugsn $

J́

by VF1 and $ugsn

J́

�

J́

by E1, and so both $

J́

P Γ and

J́

�

J́

P Γ by
L5.2b. Since ˝ “ r

J́

sΓ, it follows that ˝ P trAsΓ : $A P Γ and A�

J́

P Γu.
Let x P trAsΓ : $A P Γ and A�

J́

P Γu. By definition, x “ rAsΓ for some
A P pfspL`q where both $A P Γ and A �

J́

P Γ. Thus Γ $ugsn A�| K
and Γ $ugsn p

J́

� Aq _ pA � Kq follow by SP1 and SP4, respectively.
It follows by L5.2 that A � K R Γ and either

J́

� A P Γ or A � K P Γ,
and so

J́

�A P Γ. Having already shown that A�

J́

P Γ, it follows by
L5.2b that A «

J́

P Γ, and so rAsΓ “ r

J́

sΓ by L5.7. Thus x “ ˝, and
so trAsΓ : $A P Γ and A�

J́

P Γu “ t˝u since x was arbitrary. Given the
above, |

J́

|Γ “ trAsΓ : $A P Γ and A�

J́

P Γu as desired.
Case 2: Assuming B “ K, it follows that |K|Γ “ ∅. Assume for

reducto that there is some x P trAsΓ : $A P Γ and A � K P Γu. Thus
x “ rAsΓ for some A P pfspL`q where $A P Γ and A � K P Γ. It
follows that Γ $ugsn A�| K by SP1, and so A � K R Γ by L5.2. Thus
trAsΓ : $A P Γ and A�K P Γu “ ∅ by reductio, and so we may conclude
that |K|Γ “ trAsΓ : $A P Γ and A� K P Γu.
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Case 3: Assume B “ T . Thus |T |Γ “ SΓ. Letting s P SΓ, it follows
that s “ rAsΓ for some A P pfspL`q where $A P Γ. By VF7, $ugsn A�T ,
and so A � T P Γ by L5.2b. Thus s P trAsΓ : $A P Γ and A � T P Γu.
Since s P SΓ was arbitrary, trAsΓ : $A P Γ and A � T P Γu “ SΓ. It
follows that |T |Γ “ trAsΓ : $A P Γ and A� T P Γu by the above.

Case 4: Assuming B “ V , it follows that |V|Γ “ t‚u, where $ugsn $V
by VF1 and $ugsn V � V by E1, and so both $V P Γ and V � V P Γ by
L5.2b. Since ‚ “ rVsΓ, we know that ‚ P trAsΓ : $A P Γ and A� V P Γu.
Let x P trAsΓ : $A P Γ and A� V P Γu. By definition, x “ rAsΓ for some
A P pfspL`q where both $A P Γ and A � V P Γ. Thus Γ $ugsn A�| K
and Γ $ugsn pV � Aq _ pA � Kq follow by SP1 and SP4, respectively.
It follows by L5.2 that A � K R Γ and either V � A P Γ or A � K P Γ,
and so V � A P Γ. Having already shown that A� V P Γ, it follows by
L5.2b that A « V P Γ, and so rAsΓ “ rVsΓ by L5.7. Thus x “ ‚, and
so trAsΓ : $A P Γ and A� V P Γu “ t‚u since x was arbitrary. Given the
above, |V|Γ “ trAsΓ : $A P Γ and A� V P Γu.

Having established the base cases, we may assume for induction that
|B|Γ “ trAsΓ : $A P Γ and A � B P Γu for all B P pfspL`q such that
comppBq ă n. Letting B P pfspL`q be such that comppBq “ n, it follows
that either B “ C ^D or B “ C _D. Consider the following:

Case 1: Assume B “ C ^D. Since both comppCq, comppDq ă n, we
know by hypothesis that |C|Γ “ trAsΓ : $A P Γ and A � C P Γu and
|D|Γ “ trAsΓ : $A P Γ and A�D P Γu. Consider the following:

s P |C ^D|Γ iff MΓ, s , C ^D

iff s “ c ‹ d for some c, d where MΓ, c , C and MΓ, d , D

iff s “ c ‹ d for some c P |C|Γ and d P |D|Γ

iff s “ c ‹ d for some c P trXsΓ : $X P Γ and X � C P Γu

and d P trY sΓ : $Y P Γ and Y �D P Γu

iff s “ rXsΓ ‹ rY sΓ for some X,Y P pfspL`q such that $X, $Y P Γ

where both X � C, Y �D P Γ

p:q iff s “ rX ^ Y sΓ such that $pX ^ Y q P Γ where X ^ Y � C ^D P Γ

p;q iff s P trZsΓ : $Z P Γ and Z � C ^D P Γu. r^s

The biconditionals above hold by definition or assumption with the
exception of p:q and p;q. Starting with p:q, assume that s “ rXsΓ ‹ rY sΓ
for some X and Y such that $X, $Y P Γ where X�C P Γ and Y �D P Γ.
It follows by SP3 that Γ $ugsn $pX ^ Y q, and so $pX ^ Y q P Γ by
L5.2b. We also know that Γ $ugsn X ^ Y � C ^ D by GA8, and so
X ^Y �C^D P Γ by L5.2b. Additionally, it follows that s “ rX ^Y sΓ
by Γ-Fusion. Altogether, s “ rX ^ Y sΓ such that $pX ^ Y q P Γ where
X^Y �C^D P Γ. Existentially, generalising on X^Y , we may conclude
that there is some Z P pfspL`q such that s “ rZsΓ where $Z P Γ and
Z � C ^D P Γ, and so s P trZsΓ : $Z P Γ and Z � C ^D P Γu.

Assume instead that s P trZsΓ : $Z P Γ and Z � C ^D P Γu, and
so for some Z P pfspL`q, s “ rZsΓ where $Z P Γ and Z � C ^D P Γ.
Since Γ is �-consistent, we know Γ is conjunctive, and so there are some
X,Y P pfspL`q where $X, $Y,X � C, Y � D,X ^ Y � Z P Γ. Thus
Γ $ugsn X ^ Y � C ^D by GA8, and Γ $ugsn $pX ^ Y q by SP3. We
may then conclude that Γ $ugsn pZ �X ^ Y q _ pX ^ Y � Kq by SP4,
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and so either Z �X ^ Y P Γ or X ^ Y � K P Γ by L5.2. We also know
that $pX ^ Y q $ugsn X ^ Y �| K by SP1, and so Γ $ugsn X ^ Y �| K.
Thus X ^ Y � K R Γ by L5.2, and so Z �X ^ Y P Γ given the above.
Given that X ^ Y � Z P Γ, it follows that Γ $ugsn Z « X ^ Y , and
so Z « X ^ Y P Γ by L5.2b. Thus rZsΓ “ rXsΓ ‹ rY sΓ by L5.7,
and so s “ rXsΓ ‹ rY sΓ for some X and Y where $X, $Y P Γ and
X � C, Y �D P Γ since s “ rZsΓ. Together with the forward direction,
it follows that |C ^D|Γ “ trAsΓ : $A P Γ and A� C ^D P Γu.

Case 2: Assume B “ C _D. Since both comppCq, comppDq ă n, we
know by hypothesis that |C|Γ “ trAsΓ : $A P Γ and A � C P Γu and
|D|Γ “ trAsΓ : $A P Γ and A�D P Γu. Consider the following:

s P |C _D|Γ iff MΓ, s , C _D

iff MΓ, s , C, or MΓ, s , D, or MΓ, s , C ^D

iff s P |C|Γ, or s P |D|Γ, or s P |C ^D|Γ

iff s P trAsΓ : $A P Γ and A� C P Γu or s P trAsΓ : $A P Γ and A�D P Γu

or s P trAsΓ : $A P Γ and A� C ^D P Γu

iff s “ rAsΓ for some A P pfspL`q where $A P Γ and

and either A� C P Γ or A�D P Γ or A� C ^D P Γ

p˚q iff s “ rAsΓ for some A P pfspL`q where $A P Γ and A� C _D P Γ

iff s P trAsΓ : $A P Γ and A� C _D P Γu. r_s

All of the biconditionals above follow by assumption or definition, with
the exception of p˚q. For the forward direction, let s “ rAsΓ for some
A P pfspL´q where $A P Γ and either A � C P Γ or A � D P Γ or
A � C ^D P Γ. Given GA1, GA2, and T5, we know by L5.2b that
C �C _D P Γ, D�C _D P Γ and C ^D�C _D P Γ. Thus it follows
by GA9 that Γ $ugsn A�C _D in each case, and so A�C _D P Γ by
L5.2b. Together with the above, s “ rAsΓ for some A where $A P Γ and
A� C _D P Γ, thereby establishing the forward direction.

Assume instead that s “ rAsΓ for some A where both $A P Γ and
A�C _D P Γ. Thus Γ $ugsn pA�Cq _ pA�Dq _ pA�C ^Dq follows
by SP5, and so either A � C P Γ, A � D P Γ, or A � C ^ D P Γ by
L5.2. Thus it follows that s “ rAsΓ for some A where $A P Γ and either
A� C P Γ, A�D P Γ, or A� C ^D P Γ. Together with the above, it
follows that |C _D|Γ “ trAsΓ : $A P Γ and A� C _D P Γu.

Given the cases proven above, it follows by induction on complexity
that |B|Γ “ trAsΓ : $A P Γ and A�B P Γu for all B P pfspL`q.

It remains to show that every model M P C` of the expanded language
L` has a reduct MR P C such that MR ( ϕ iff M ( ϕ for all ϕ P wfspL´q.
Given any S-model M “ xS, ‹, | ¨ |y P C`, consider the following:

Restriction: Let | ¨ |R : LÑ PS where |p|R “ |p| for all p P L.

R-Map: Let MR “ xS, ‹, | ¨ |Ry where M “ xS,
Ů

, | ¨ |y P C`.

The following lemma proves that MR P C for any M P C`, where MR makes
the same wfs of L´ true as M.
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L5.11 If M P C`, then MR P C where MR ( ϕ iff M ( ϕ for all ϕ P wfspL´q.

Proof. Let M P C`. By definition, M “ xS, ‹, | ¨ |y where xS, ‹y P M
and |pi|, |qi|, |ri|, |si| P PS for all i P N. Thus MR “ xS, ‹, | ¨ |y where
xS, ‹y PM and |pi| P PS for all i P N, and so MR P C.

By construction, |pi|
R “ |pi| for all pi P L. Thus it follows by two

routine induction proofs that: (1) |A|R “ |A| for all A P pfspL´q; and
(2) MR ( ϕ just in case M ( ϕ for all ϕ P wfspL´q as desired.

L5.12 A�B P ΓΣ,θ iff MΓΣ,θ
( A�B for all A,B P pfspL`q.

Proof. Let A,B P pfspL`q, and assume A� B P ΓΣ,θ. Let s P |A|ΓΣ,θ
.

By L5.10, s “ rXsΓΣ,θ
where $X P ΓΣ,θ and X � A P ΓΣ,θ, and so

ΓΣ,θ $ugsn X �B and X �B P ΓΣ,θ by GA9 and L5.2b, respectively.
Given that $X P ΓΣ,θ, it follows that rXsΓΣ,θ

P |B|ΓΣ,θ
by L5.10, and so

s P |B|ΓΣ,θ
. Thus |A|ΓΣ,θ

Ď |B|ΓΣ,θ
, and so MΓΣ,θ

( A � B. It follows
that if A�B P ΓΣ,θ, then MΓΣ,θ

( A�B.
Assume instead that A�B R ΓΣ,θ. It follows that A�| B P ΓΣ,θ and

ΓΣ,θ $ugsn A�| B by L5.2a and L5.2b, respectively. We also know that
A�B P atomspL´q, and so A�B “ αi for some i P N. By construction,
ωi, $qi P ∆i

Σ,θ where ωi “ rpqi � Aq Ñ pqi � Bqs Ñ pA � Bq. Since

∆i
Σ,θ Ď ∆Σ,θ Ď ΩΣ,θ Ď ΓΣ,θ, it follows that ωi, $qi P ΓΣ,θ. We may

then conclude that ΓΣ,θ $ugsn rpqi � Aq Ñ pqi � Bqs Ñ pA � Bq, and
so ΓΣ,θ $ugsn  rpqi � Aq Ñ pqi � Bqs since ΓΣ,θ $ugsn A�| B. Thus
ΓΣ,θ $ugsn pqi � Aq ^ pqi�| Bq, and so qi � A P ΓΣ,θ and qi � B R ΓΣ,θ

by L5.2. Since $qi P ΓΣ,θ by construction, we know that rqisΓΣ,θ
P SΓΣ,θ

.
Given that qi � A P ΓΣ,θ but qi � B R ΓΣ,θ, it follows by L5.10 that
rqisΓΣ,θ

P |A|ΓΣ,θ
but rqisΓΣ,θ

R |B|ΓΣ,θ
, and so |A|ΓΣ,θ

Ę |B|ΓΣ,θ
. Thus

MΓΣ,θ
* A�B, and so if MΓΣ,θ

( A�B, then A�B P ΓΣ,θ. We may
then conclude that A�B P ΓΣ,θ just in case MΓΣ,θ

( A�B.

L5.13 $A P ΓΣ,θ iff MΓΣ,θ
( $A for all A P pfspL`q.

Proof. Let A P pfspL`q, and assume $A P ΓΣ,θ. By E1, $ugsn A� A,
and so A�A P ΓΣ,θ by L5.2b. Thus rAsΓΣ,θ

P |A|ΓΣ,θ
, and so it follows

that rAsΓΣ,θ
P |A|ΓΣ,θ

by L5.10. Now assume x P |A|ΓΣ,θ
. By L5.10,

there is some X P pfspL`q such that x “ rXsΓΣ,θ
where $X P ΓΣ,θ and

X � A P ΓΣ,θ. By SP4, ΓΣ,θ $ugsn pA �Xq _ pX � Kq, and so either
A � X P ΓΣ,θ or X � K P ΓΣ,θ by L5.2. Since $X P ΓΣ,θ, it follows
that ΓΣ,θ $ugsn X �| K by SP1, and so X � K R ΓΣ,θ by L5.2. Thus
A�X P ΓΣ,θ given the disjunction above. Having already shown that
X � A P ΓΣ,θ, it follows that ΓΣ,θ $ugsn X « A, and so X « A P ΓΣ,θ

by L5.2b. Thus rXsΓΣ,θ
“ rAsΓΣ,θ

by L5.7, and so x “ rAsΓΣ,θ
. Since

x was arbitrary, |A|ΓΣ,θ
“ trAsΓΣ,θ

u, and so MΓΣ,θ
( $A. We may then

conclude that if $A P ΓΣ,θ, then MΓΣ,θ
( $A.

Assuming instead that MΓΣ,θ
( $A, we know that |A|ΓΣ,θ

“ txu
for some x P SΓΣ,θ

. By L5.10, there is some X P pfspL`q such that
x “ rXsΓΣ,θ

where both $X P ΓΣ,θ and X�A P ΓΣ,θ. Since $ugsn X�X
by E1, it follows that X �X P Γ by L5.2b, and so x P |X|ΓΣ,θ

by L5.10.
Assume for reductio that A � X R ΓΣ,θ. It follows by L5.12 that
MΓΣ,θ

* A�X, and so |A|ΓΣ,θ
Ę |X|ΓΣ,θ

. Thus some y P |A|ΓΣ,θ
where

y R |X|ΓΣ,θ
. Given that |A|ΓΣ,θ

“ txu, we know that y “ x, and so
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x R |X|ΓΣ,θ
, contradicting the above. By reductio, A�X P ΓΣ,θ, and so

ΓΣ,θ $ugs X « A given that X �A P ΓΣ,θ. Since X « A $ugsn $X ” $A
by SP2, we know ΓΣ,θ $ugsn $X ” $A. Given that $X P ΓΣ,θ, it follows
that ΓΣ,θ $ugsn $A, and so $A P ΓΣ,θ by L5.2b. Thus if MΓΣ,θ

( $A,
then $A P ΓΣ,θ, and so $A P ΓΣ,θ just in case MΓΣ,θ

( $A.

P5.1 If Σ &ugsn θ for ΣY tθu Ď wfspL´q, then χ P ΓΣ,θ iff MΓΣ,θ
( χ for all χ P wfspL`q.

Proof. Let Σ Y tθu Ď wfspL´q and assume Σ &ugsn θ. Thus ΓΣ,θ is
maximal �-consistent. Assuming comp`pχq “ 0, either χ “ A � B or
χ “ $A for some A,B P pfspL`q. If χ “ A�B, then A�B P ΓΣ,θ just
in case MΓΣ,θ

( A�B by L5.12, and so χ P ΓΣ,θ just in case MΓΣ,θ
( χ.

If instead χ “ $A, then $A P ΓΣ,θ just in case MΓΣ,θ
( $A by L5.13,

and so χ P ΓΣ,θ just in case MΓΣ,θ
( χ. Thus χ P ΓΣ,θ just in case

MΓΣ,θ
( χ for any χ P wfspL`q where comp`pχq “ 0. By induction we

may show for all χ P wfspL`q that χ P ΓΣ,θ just in case MΓΣ,θ
( χ.

6 Infinite Fusion

Given any mereological state space xS, ‹y P M and nonempty finite X Ď S,
there is a unique fusion of the states which belong to X. However, if S is infinite,
we may also consider the fusion of infinite subsets of X Ď S. Accordingly, I
will restrict attention to the class of state spaces which is closed under both
finite and infinite fusion. More specifically, let an infinite state space be any
ordered pair xS,

Ů

y where S is a set closed under the fusion operator
Ů

which
maps subsets of S to members of S, where

Ů

∅ “ ˝ is the designated null
state, and

Ů

S “ ‚ is the designated full state. An infinite state space xS,
Ů

y

is mereological just in case it also satisfies the following:

Collapse:
Ů

tsu “ s for all s P S.

Associativity:
Ů

t
Ů

Ei : i P Iu “
Ů Ť

tEi : i P Iu where I indexes each Ei Ď S.15

Let M8 be the class of all infinite mereological state spaces. Now consider:

8-Closure: rXs “ t
Ů

Y : ∅ ‰ Y Ď Xu.

S8-Propositions: P8S “ tX Ď S : X “ rXsu.

Given any infinite state space S PM8 where S “ xS,
Ů

y, an infinite unilateral
S-model M of L´ is any ordered triple M “ xS,

Ů

, | ¨ |y where |p| P P8S for all
p P L. Let C8S be the class of infinite S-models, and C8 “

Ť

tC8S : S PMu. We
may then make the following amendment to the Unilateral Pre-Semantics:

p 9̂ q M, s , A^B iff s “
Ů

td, tu where M, d , A and M, t , B.

15 I will let context determine which definition of associativity is intended.
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With the exception of the clause given above, the definition of exact verification
, is otherwise unchanged. As before, we may extend the domain of | ¨ |:

Infinitary Valuation: s P |A| iff M, s , A.

Given this definition, the Unilateral Semantics may be preserved, thereby
defining (. As before, Γ (C8 ϕ just in case for all M P C8, if M ( γ for all
γ P Γ, then M ( ϕ, where a wfs ϕ is C8-valid just in case (C8 ϕ.

In §3, the space of propositions PS was shown to be closed under the
operators ^ and _. We may now show that the space of infinite propositions
P8S is closed under the infinitary analogues which we may define as follows:

Cartesian Product: Let ΠtXi : i P Iu be the set of functions f : I Ñ
Ť

tXi : i P Iu

such that fpiq P Xi for all i P I.

Infinite Product: Let
Ź

tXi : i P Iu “ t
Ů

tfpiq : i P Iu : f P ΠtXi : i P Iuu.

Infinite Sum: Let
Ž

tXi : i P Iu “ r
Ť

tXi : i P Ius.

Given any S PM and indexed family of propositions tXi : i P Iu P P8S , both:

L6.4
Ź

tXi : i P Iu P P8S . L6.5
Ž

tXi : i P Iu P P8S .

Whereas PS was only shown to be closed under finitary produce and sum, the
results above prove that P8S is closed under infinite product and sum.

We may then define finitary analogues of infinite product and sum by letting
X ^ Y “

Ź

tX,Y u and X _ Y “
Ž

tX,Y u. Given any S P M8, it follows
from L6.6 and L6.7 that A8S “ xP8S ,^,_, T ,K,V,

J́

y is an algebra with the
same signature as AL´ . Moreover, we may show that for any M P C8S , the
valuation function | ¨ | : AL´ Ñ A8S is a L´-homomorphism:

L6.9 |A^B| “ |A| ^ |B|.

L6.10 |A_B| “ |A| _ |B|.

P6.1 |A| P P8S .

Instead of forming a lattice, A8S may be re-described as a pre-bilattice consisting
of two complete lattices.16 In particular, we may let B8S “ xPS ,Ď,∝y where Ď
is subset inclusion, and ∝ is defined by means of the following:

Parthood: x Ď y iff
Ů

tx, yu “ y.

Subsumption: X " Y iff for all y P Y , there is some x P X where x Ď y.

16 In §7, bilattices are defined in terms of pre-bilattices. See also Ginsberg (1988), Fitting
(1991, 2002), and Arieli and Avron (1996). Fine (2017b) also draws this connection.

32



§6 Infinite Fusion Benjamin Brast-McKie

Subservience: X ! Y iff x ‹ y P Y for all x P X and y P Y .17

Containment: X ∝ Y iff X " Y and X ! Y .

We may then prove that for any indexed family of sets tXi : i P Iu Ď P8S , both:

L6.6
Ź

tXi : i P Iu “ lub∝tXi : i P Iu.

L6.7
Ž

tXi : i P Iu “ lubĎtXi : i P Iu.

Together with L6.4 and L6.5, it follows from the above that both xP8S ,∝y and
xP8S ,Ďy are complete lattices. Accordingly, B8S “ xP8S ,∝,Ďy is a pre-bilattice,
paving the way for the introduction of negation in §7.

Given these results, we may extend the Soundness and Completeness results
proven above by restricting consideration to the class of models C8 defined
over the infinite state spaces in M8. In particular:

T3 (Infinite Fusion) Σ (C8 ϕ iff Σ $ugsn ϕ.

Proof. We begin by showing that there are two class functions F : C Ñ C8 and
B : C8 Ñ C which preserve logical consequence. More specifically:

P6.3: M ( ϕ iff MF ( ϕ for all M P C and ϕ P wfspL´q.

P6.4: Mu ( ϕ iff MB
u ( ϕ for all Mu P C8 and ϕ P wfspL´q.

Given that Σ *C ϕ, there is some M P C where M ( σ for all σ P Σ but
M * ϕ. By P6.3, MF P C8 where MF ( σ for all σ P Σ but MF * ϕ, and so
Σ *C8 ϕ. Thus by contraposition, if Σ (C8 ϕ, then Σ (C ϕ. Assuming instead
Σ *C8 ϕ, there is some M P C8 where M ( σ for all σ P Σ but M * ϕ. By
P6.4, MB P C where MB ( σ for all σ P Σ but MB * ϕ, and so Σ *C ϕ.
Thus Σ *C ϕ, and so by contraposition, if Σ (C ϕ, then Σ (C8 ϕ. Together,
Σ (C8 ϕ iff Σ (C ϕ. By Theorem T1 and Theorem T2, we know that
Σ (C ϕ iff Σ $ugsn ϕ, and so Σ (C8 ϕ iff Σ $ugsn ϕ.

The remainder of the present section will be devoted to proving the results
above, many of which will play an important role in the following sections.

L6.1 For any S PMS and X Ď S, if x P X and
Ů

X “ y, then x Ď y.

Proof. Follows from Collapse and Associativity.

L6.2 x Ď x for all S PMS and x P S.

Proof. Immediate from Collapse.

L6.3 For any S PMS and x, y, z P S, if x Ď y and y Ď z, then x Ď z.

17 One could define X ! Y as for all x P X, there is some y P Y where x Ď y. These
definitions are equivalent provided we require X,Y P Pc. Compare Fine (2016, p. 207).

33



§6 Infinite Fusion Benjamin Brast-McKie

Proof. Follows from Collapse and Associativity.

L6.4
Ź

tXi : i P Iu P P8S for all S PM and tXi : i P Iu P P8S .

Proof. Let S PM8 and Y Ď
Ź

tXi : i P Iu, where Y “ tyj : j P Ju. By
definition, yj “

Ů

tfjpiq : i P Iu where fj P ΠtXi : i P Iu for each j P J .
Letting zi “

Ů

tfjpiq : j P Ju for each i P I, it follows that zi P Xi since
Xi P P8S . Thus

Ů

tzi : i P Iu P
Ź

tXi : i P Iu. We may then observe that:

ğ

tzi : i P Iu “
ğ

t
ğ

tfjpiq : j P Ju : i P Iu

“
ğ ď

ttfjpiq : j P Ju : i P Iu

“
ğ ď

ttfjpiq : i P Iu : j P Ju

“
ğ

t
ğ

tfjpiq : i P Iu : j P Ju

“
ğ

tyj : j P Ju

“
ğ

Y.

Thus
Ů

Y P
Ź

tXi : i P Iu, and so r
Ź

tXi : i P Ius Ď
Ź

tXi : i P Iu,
where the converse follows by Collapse. Thus

Ź

tXi : i P Iu P P8S .

L6.5
Ž

tXi : i P Iu P P8S for all S PM and tXi : i P Iu P P8S .

Proof. Let S P M8 and Y Ď
Ž

tXi : i P Iu be nonempty, setting
Y “ tyj : j P Ju. By definition, yj “

Ů

Zj where Zj Ď
Ť

tXi : i P Iu
for each j P J . For each i P I, we may let xi “

Ů Ť

tZj XXi : j P Ju,
observing that xi P Xi since Xi P P8S . Thus

Ů

txi : i P Iu P
Ž

tXi : i P Iu.
We may then argue as follows:

ğ

txi : i P Iu “
ğ

t
ğ ď

tZj XXi : j P Ju : i P Iu

“
ğ ď

t
ď

tZj XXi : j P Ju : i P Iu

“
ğ ď

t
ď

tZj XXi : i P Iu : j P Ju

“
ğ ď

tZj : j P Ju

“
ğ

t
ğ

Zj : j P Ju

“
ğ

tyj : j P Ju

“
ğ

Y.

Thus
Ů

Y P
Ž

tXi : i P Iu, and so r
Ž

tXi : i P Ius Ď
Ž

tXi : i P Iu,
where the converse holds by Collapse. Thus

Ź

tXi : i P Iu P P8S .

L6.6
Ź

tXi : i P Iu “ lub∝tXi : i P Iu where S PM8 and tXi : i P Iu Ď P8S .

Proof. Assume S PM8 and tXi : i P Iu Ď P8S , and let s P
Ź

tXi : i P Iu.
It follows that s “

Ů

tgpiq : i P Iu for some g : I Ñ
Ť

tXi : i P Iu such
that gpiq P Xi for all i P I. Choose some i P I. If follows that gpiq P Xi,
and so gpiq Ď s. Generalising on s, it follows that Xi "

Ź

tXi : i P Iu.
Now choose some x P Xi and z P Z. It follows that z “

Ů

tfpiq : i P Iu
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for some f : I Ñ
Ť

tXi : i P Iu such that fpiq P Xi for all i P I. Since
Xi P P8S , we know that

Ů

tx, fpiqu P Xi. Consider the definition:

f 1pjq “

#

fpjq if j ‰ i
Ů

tx, fpiqu otherwise.

It follows that
Ů

tf 1piq : i P Iu P Z. We may then observe the following:

ğ

tx, zu “
ğ

t
ğ

txu,
ğ

tfpjq : j P Iuu

“
ğ ď

ttxu, tfpjq : j P Iuu

“
ğ ď

ttx, fpiqu, tfpjq : j P I where j ‰ iuu

“
ğ

t
ğ

tx, fpiqu,
ğ

tfpjq : j P I where j ‰ iuu

“
ğ ď

tt
ğ

tx, fpiquu, tfpjq : j P I where j ‰ iuu

“
ğ

tf 1pjq : j P Iu.

Thus
Ů

tx, zu P Z, and so Xi !
Ź

tXi : i P Iu. Together with the above
Xi ∝

Ź

tXi : i P Iu. Generalising on i P I, we may conclude that
Ź

tXi : i P Iu is an upper bound of tXi : i P Iu with respect to ∝.
Let Z P P8S be an upper bound of tXi : i P Iu with respect to ∝.

Accordingly, Xi ∝ Z for all i P I, and so both Xi " Z and Xi ! Z for
all i P I. Choose some z P Z. It follows that for each i P I, there is some
xi P Xi where xi Ď z, and so

Ů

txi, zu “ z for each i P I. Accordingly, we
may let f : I Ñ

Ť

tXi : i P Iu be such that fpiq P Xi for all i P I where
Ů

txi, zu “ z. By definition,
Ů

tfpiq : i P Iu P
Ź

tXi : i P Iu. Consider:

ğ

t
ğ

tfpiq : i P Iu, zu “
ğ

t
ğ

tfpiq : i P Iu,
ğ

tzuu

“
ğ ď

ttfpiq : i P Iu, tzuu

“
ğ ď

ttfpiq, zu : i P Iu

“
ğ

t
ğ

tfpiq, zu : i P Iu

“
ğ

tz : i P Iu

“ z.

By definition,
Ů

tfpiq : i P Iu Ď z, and so
Ź

tXi : i P Iu " Z as desired.
Choose instead some x P

Ź

tXi : i P Iu and z P Z. It follows that
x “

Ů

thpiq : i P Iu, where hpiq P Xi for all i P I. Since Xi ! Z for all
i P I, we know that

Ů

thpiq, zu P Z for all i P I, and so it follows that
Ů

t
Ů

thpiq, zu : i P Iu P Z given that Z P P8S . Consider the following:

ğ

tx, zu “
ğ

t
ğ

thpiq : i P Iu,
ğ

tzuu

“
ğ ď

tthpiq : i P Iu, tzuu

“
ğ ď

tthpiq, zu : i P Iu

“
ğ

t
ğ

thpiq, zu : i P Iu.

Thus
Ů

tx, zu P Z, and so
Ź

tXi : i P Iu ! Z. Together with the above,
Ź

tXi : i P Iu ∝ Z, and so
Ź

tXi : i P Iu “ lub∝tX,Y u as desired.
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L6.7
Ž

tXi : i P Iu “ lubĎtXi : i P Iu where S PM8 and tXi : i P Iu Ď P8S .

Proof. Assume S PM8 and tXi : i P Iu Ď P8S . Choose some i P I, and
x P Xi. It follows that x P

Ť

tXi : i P Iu, and so
Ů

txu P r
Ť

tXi : i P Ius.
Thus x P

Ž

tXi : i P Iu by Collapse, and so Xi Ď
Ž

tXi : i P Iu. Since
i P I was arbitrary, we may conclude that

Ž

tXi : i P Iu is an upper
bound of tXi : i P Iu with respect to Ď.

Let Z P P8S be an upper bound of tXi : i P Iu with respect to Ď.
Choose some x P

Ž

tXi : i P Iu. It follows that x “
Ů

Y for some
nonempty Y Ď

Ť

tXi : i P Iu. Letting Yi “ Y XXi for each i P I, set
W “ t

Ů

Yi : ∅ ‰ Yiu. Thus for any w PW , we know that w “
Ů

Yi for
some i P I, where Yi Ď Xi. Since Xi P P8S for all i P I, it follows that
w P Xi, and so w P Z since Z is an upper bound of tXi : i P Iu with
respect to Ď. Thus W Ď Z, and so

Ů

W P Z since Z P P8S . However:

ğ

W “
ğ

t
ğ

Yi : ∅ ‰ Yiu

“
ğ ď

tYi : ∅ ‰ Yiu

“
ğ ď

tY XXi : i P Iu

“
ğ

Y

“ x.

Thus x P Z, and so
Ž

tXi : i P Iu Ď Z more generally. Given that Z
was an arbitrary upper bound of tXi : i P Iu with respect to Ď, we may
conclude that

Ž

tXi : i P Iu “ lubĎX,Y as needed.

L6.8 U _ V “ U Y V Y pU ^ V q for all U, V P P8S .

Proof. Similar to Sum.

L6.9 |A^B| “ |A| ^ |B| for all M P C8 and A,B P pfspL´q.

Proof. Similar to L3.4.

L6.10 |A_B| “ |A| _ |B| for all M P C8 and A,B.

Proof. Similar to L3.5.

P6.1 |A| P P8S for all M P C8S and A P pfspL´q.

Proof. Assume M P C8. By definition, |pi| P P8S for every pi P L, where
|e| P P8S for all e P E. Assume for induction that |A|, |B| P P8S . We know
that |A ^ B| “ |A| ^ |B| by L6.9, and |A _ B| “ |A| _ |B| by L6.10,
and so both |A| ^ |B|, |A| _ |B| P P8S by L6.6 and L6.7. It follows by
induction that |A| P PS for all A P pfspL´q.

L6.11 X ^

J́

“ X for all S PM8 and X P P8S .
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Proof. Let S PM8 and X P P8S . Consider the following biconditionals:

s P X ^

J́

iff s “
ğ

tx, ˝u for some x P X

iff s “
ğ

t
ğ

txu,
ğ

∅u for some x P X

iff s “
ğ ď

ttxu,∅u for some x P X

iff s “
ğ

txu for some x P X

iff s P X.

The above hold by Collapse and Associativity, and so X ^

J́

“ X.

L6.12 X _K “ X for all S PM8 and X P P8S .

Proof. Let S PM8 and X P P8S . By L6.8, X _K “ X Y∅Y pX ^∅q.
Since ∅^X “ ∅, it follows that X _∅ “ X.

L6.13 X ^∅ “ ∅ for all S PM8 and X P P8S .

Proof. Immediate from Infinite Product.

L6.14 X _ S “ S for all S PM8 and X P P8S .

Proof. Let S PM8 and X P P8S . By L6.8, X _ S “ X Y S Y pX ^ Sq.
Since X,S P P8S , it follows by L6.4 that X ^ S P P8S , so X ^ S Ď S. Of
course, we also know that X Ď S, and so S YX Y pS ^Xq “ S. Thus
we may conclude that S _X “ X a needed.

L6.15 pX^Y q_ pX^Zq Ď X^pY _Zq for all S PM8 and X,Y, Z P PS8.

In order to define the function F, we introduce the following definitions
where S “ xS, ‹y is an arbitrary mereological state space in M:

Ideal: X Ď S is an ideal in xS, ‹y iff all x, y are such that x, y P X just in case x ‹ y P X.

S-Ideals: Let IS be the set of all ideals in S.

X-Ideal: Let idealSpXq “
Ş

tY P IS : X Ď Y u.

Parts: Let partsSpxq “ ty P S : y ‹ x “ xu.

We may now prove the following lemmas for an arbitrary state space S PM:

L6.16 If X Ď S, then idealSpXq P IS .

Proof. Let S P M where S “ xS, ‹y, and choose some J Ď IS . We
may then let x, y P idealSpXq, choosing some Y P IS where X Ď Y .
Thus x, y P Y , and so x ‹ y P Y . Generalising on Y , it follows that
x ‹ y P idealSpXq. Assume instead that x ‹ y P idealSpXq, choosing an
arbitrary Y P IS where X Ď Y . It follows that x ‹ y P Y , and so x, y P Y .
Thus x, y P idealSpXq, and so idealSpXq P IS .
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L6.17 For all X,Y Ď S, if X Ď Y , then idealSpXq Ď idealSpY q.

Proof. Let X,Y Ď S where X Ď Y , and assume Z P IS where Y Ď Z.
It follows that X Ď Z, and so tZ P IS : Y Ď Zu Ď tZ P IS : X Ď Zu.
Thus

Ş

tZ P IS : X Ď Zu Ď
Ş

tZ P IS : Y Ď Zu, or equivalently
idealSpXq Ď idealSpY q. This concludes the proof.

L6.18 If x P S, then partsSpxq “ idealSptxuq.

Proof. Let x P S, and assume y P partsSpxq. It follows that y ‹ x “ x.
Choose an arbitrary Y P IS where txu Ď Y . It follows that x P Y , and
so x ‹ y P Y . Given that Y is an ideal, we know that x, y P Y , and
so y P Y . Since Y P IS where txu Ď Y was arbitrary, it follows that
y P idealSptxuq. Thus partsSpxq Ď idealSptxuq as desired.

In order to show that partsSpxq is an ideal, let y, z P partsSpxq.
It follows that y ‹ x “ x and z ‹ x “ x, and so y ‹ pz ‹ xq “ x. By
Associativity, py ‹ zq ‹ x “ x, and so y ‹ z P partsSpxq. Assume instead
that y‹z P partsSpxq. It follows that py‹zq‹x “ x, and so both y‹x “ x
and z ‹ x “ x by Idempotency, Commutativity, and Associativity, and so
y, z P partsSpxq. Since y and z were arbitrary, partsSpxq P IS .

It follows by Idempotency that x ‹ x “ x, and so x P partsSpxq.
Letting y P idealSptxuq be arbitrary, it follows from the above that
y P partsSpxq since partsSpxq P IS where txu Ď partsSpxq. Thus
idealSptxuq Ď partsSpxq, and so partsSpxq “ idealSptxuq.

L6.19 If x, y P S, then partsSpxq Y partsSpyq Ď partsSpx ‹ yq.

Proof. Assume x, y P S, and let z P partsSpxq Y partsSpyq. It follows
that either z P partsSpxq or z P partsSpyq, and so z ‹x “ x or z ‹ y “ y.
In either case z ‹ px ‹ yq “ x ‹ y, and so z P partsSpx ‹ yq. Thus we may
conclude that partsSpxq Y partsSpyq Ď partsSpx ‹ yq.

L6.20 For all x, y P S, if partsSpxq “ partsSpyq, then x “ y.

Proof. Let x, y P S, and assume that partsSpxq “ partsSpyq. It follows
by Idempotency, x P partsSpxq and y P partsSpyq, and so x P partsSpyq
and y P partsSpxq. Thus x ‹ y “ y and y ‹ x “ x, and so x “ y.

L6.21 If X Ď S, then X Ď X Ď idealSpXq.

Proof. Assume X Ď S, and let x P X. It follows that x ‹ x P X, and so
x P X by Idempotency. Thus X Ď X.

Assume instead that x P X. It follows that x “ y‹z for some y, z P X.
Choose some Z P IS where X Ď Z. Thus y, z P Z, and so y ‹ z P Z.
Generalising on Z, y ‹ z P idealSpXq, and so X Ď idealSpXq.

L6.22 If X P IS , then idealSpXq “ X.

Proof. Assume X P IS , and let x P X. Choose an arbitrary Y P IS
where X Ď Y . It follows that x P Y . Generalising on Y we know that
x P idealSpXq, and so it follows that X Ď idealSpXq.

Assume instead that x P idealSpXq. It follows that x P Y for all
Y P IS where X Ď Y . In particular, x P X given that X P IS . Thus
idealSpXq Ď X, and so idealSpXq “ X.
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L6.23 If X Ď S, then idealSpXq “
Ť

tpartsSpxq : x P Xu.

Proof. We begin by showing that
Ť

tpartsSpxq : x P Xu P IS . Assume
y, z P

Ť

tpartsSpxq : x P Xu. Thus y P partsSpuq and z P partsSpvq
for some u, v P X, and so y ‹u “ u and z ‹v “ v. Since X is closed under
fusion, we know that u ‹ v P X, and so py ‹ uq ‹ pz ‹ vq P X. However:

u ‹ v “ py ‹ uq ‹ pz ‹ vq

“ py ‹ zq ‹ pu ‹ vq

Thus y ‹ z P partsSpu ‹ vq where u ‹ v P X, and so we may conclude that
y ‹ z P

Ť

tpartsSpxq : x P Xu. In order to establish the converse, assume
that y ‹ z P

Ť

tpartsSpxq : x P Xu. Thus y ‹ z P partsSpwq where
w P X, and so py ‹ zq ‹ w “ w. As in L6.18, it follows that y ‹ w “ w
and z ‹ w “ w, and so both y, z P partsSpwq where w P X. Thus both
y, z P

Ť

tpartsSpxq : x P Xu, and so
Ť

tpartsSpxq : x P Xu P IS .
Letting x P X be arbitrary, x‹x P X, and so x P X and x P partsSpxq.

Thus x P
Ť

tpartsSpxq : x P Xu, and so X Ď
Ť

tpartsSpxq : x P Xu. It
follows that idealSX Ď idealSp

Ť

tpartsSpxq : x P Xuq by L6.17, and
so idealSp

Ť

tpartsSpxq : x P Xuq “
Ť

tpartsSpxq : x P Xu given that
Ť

tpartsSpxq : x P Xu P IS . Thus idealSX Ď
Ť

tpartsSpxq : x P Xu.
Assume instead that x P X. By L6.17, idealSptxuq Ď idealSpXq.

Thus partsSpxq Ď idealSpXq by L6.18. Additionally, X Ď idealSpXq
by L6.21, and so idealSpXq Ď idealSpidealSpXqq by L6.17. Thus
partsSpxq Ď idealSpXq since idealSpidealSpXqq “ idealSpXq by
L6.22. Since x P X was arbitrary,

Ť

tpartsSpxq : x P Xu Ď idealSX.
Together with the above, idealSX “

Ť

tpartsSpxq : x P Xu.

L6.24 If X Ď S, then idealSp
Ť

tpartsSpxq : x P Xuq “
Ť

tpartsSpxq : x P Xu.

Proof. We first show that idealSp
Ť

tpartsSpxq : x P Xuq “ idealSpXq.
Choose some Y P IS where X Ď Y , and let y P

Ť

tpartsSpxq : x P Xu. It
follows that y P partsSpzq for some z P X, and so y ‹ z “ z where z P Y .
Thus y‹z P Y , and so y P Y . More generally,

Ť

tpartsSpxq : x P Xu Ď Y ,
and so Y P tY P IS :

Ť

tpartsSpxq : x P Xu Ď Y u. Generalising on Y , we
know that tY P IS : X Ď Y u Ď tY P IS :

Ť

tpartsSpxq : x P Xu Ď Y u,
and so

Ş

tY P IS :
Ť

tpartsSpxq : x P Xu Ď Y u Ď
Ş

tY P IS : X Ď Y u.
Equivalently, idealSp

Ť

tpartsSpxq : x P Xuq Ď idealSpXq.
Assume instead that x P X. By Idempotency, x P partsSpxq, and

so x P
Ť

tpartsSpxq : x P Xu. Thus X Ď
Ť

tpartsSpxq : x P Xu, and
so idealSpXq Ď idealSp

Ť

tpartsSpxq : x P Xuq by L6.17. Given the
above, idealSp

Ť

tpartsSpxq : x P Xuq “ idealSpXq, and so by L6.23,
idealSp

Ť

tpartsSpxq : x P Xuq “
Ť

tpartsSpxq : x P Xu.

Given any finite state space S P M, we may construct an infinite state
space S8 “ xIS ,

Ů

y where
Ů

is defined as follows:

Infinite Fusion:
Ů

X “ idealSp
Ť

Xq for all X Ď IS .

As I will go on to show, S8 P M8 for all S P M, and so given the definition
above, P8S8 “ tX Ď IS : X “ rXsu, which I will write P8S for simplicity. We
may then define a function F : PS Ñ P8S as below:
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Forward: FpXq “ rtpartsSpxq : x P Xus for all X P PS .

In what follows, I will extend F to a function which maps C into C8, where
the lemmas given below build towards the construction of an infinite model
MF P C8 from any finite model M P C, culminating in the proof of P6.3.

L6.25
Ů

U P IS for all U Ď IS .

Proof. Let U Ď IS , and assume x, y P idealSp
Ť

Uq. Choose some
Z P IS where

Ť

U Ď Z. Thus x, y P Z, and so x ‹ y P Z. More generally,
x ‹ y P idealSp

Ť

Uq. Assume instead that x ‹ y P idealSp
Ť

Uq, letting
V P IS where

Ť

U Ď V . Thus x ‹ y P V , and so x, y P V . More generally,
x, y P idealSp

Ť

Uq. Thus idealSp
Ť

Uq P IS , and so
Ů

U P IS .

L6.26
Ů

txu “ x for all x P IS .

Proof. Let x P IS . It follows that
Ů

txu “ idealSp
Ť

txuq “ idealSpxq,
and so

Ů

txu “ x by L6.22.

L6.27
Ů

t
Ů

Ui : i P Iu “
Ů Ť

tUi : i P Iu if Ui Ď IS for all i P I.

Proof. Assume Ui Ď IS for all i P I. We first show that every Z P IS is
such that

Ť

tidealSp
Ť

Uiq : i P Iu Ď Z just in case
Ť Ť

tUi : i P Iu Ď Z.
Let Z P IS where

Ť

tidealSp
Ť

Uiq : i P Iu Ď Z, and choose some
x P

Ť Ť

tUi : i P Iu. Thus x P
Ť

Ui for some i P I. Since
Ť

Ui Ď S, we
know that

Ť

Ui Ď idealSp
Ť

Uiq by L6.21, and so x P idealSp
Ť

Uiq.
Thus x P

Ť

tidealSp
Ť

Uiq : i P Iu Ď Z, and so
Ť Ť

tUi : i P Iu Ď Z. By
discharge, if

Ť

tidealSp
Ť

Uiq : i P Iu Ď Z, then
Ť Ť

tUi : i P Iu Ď Z.
Assume

Ť Ť

tUi : i P Iu Ď Z, and let x P
Ť

tidealSp
Ť

Uiq : i P Iu.

Thus x P idealSp
Ť

Uiq for some i P I, so x P
Ť

tpartsSpyq : y P
Ť

Uiu

by L6.23. It follows that x P partsSpyq for some y P
Ť

Ui, and so
x‹y “ y where y “ a‹b for some a, b P

Ť

Ui. Thus a, b P
Ť Ť

tUi : i P Iu.
By assumption, a, b P Z, and so a ‹ b P Z since Z P IS . Thus y P Z,
and so x ‹ y P Z, given the above. We may then conclude that x P Z,
and so

Ť

tidealSp
Ť

Uiq : i P Iu Ď Z. We know by discharge that
if

Ť Ť

tUi : i P Iu Ď Z, then
Ť

tidealSp
Ť

Uiq : i P Iu Ď Z. Thus
Ť

tidealSp
Ť

Uiq : i P Iu Ď Z just in case
Ť Ť

tUi : i P Iu Ď Z for all
Z P IS given that Z P IS was arbitrary. Put otherwise:

!

Z P Is :
ď

tidealSp
ď

Uiq : i P Iu Ď Z
)

“

!

Z P IS :
ď ď

tUi : i P Iu Ď Z
)

.

By then taking the intersection of both sides of the identity above, we
may observe that the identities below follow from the definitions:

idealSp
ď

tidealSp
ď

Uiq : i P Iuq “ idealSp
ď ď

tUi : i P Iuq
ğ

t
ğ

Ui : i P Iu “
ğ ď

tUi : i P Iu.

Given this final identity, we may conclude the proof by generalising on
the family of sets Ui Ď IS indexed by I.

L6.28 For all X,Y Ď IS , if X Ď Y , then rXs Ď rY s.
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Proof. Let X,Y Ď IS where X Ď Y , and let x P rXs. Thus some Z Ď X
where x “

Ů

Z, and so Z Ď Y . Thus x P rY s, and so rXs Ď rY s.

L6.29 rrU ss “ rU s for all U Ď IS .

Proof. Let U Ď IS , and assume u P rrU ss. It follows that u “
Ů

V for
some V Ď rU s. Let V be indexed by I such that V “ tvi : i P Iu, and
choose some vi P V . It follows that vi “

Ů

Vi for some Vi Ď U . Thus:

u “
ğ

V

“
ğ

t
ğ

Vi : i P Iu

“
ğ ď

tVi : i P Iu

The latter identity holds by L6.27. Since Vi Ď U for all i P I, we know
that

Ť

tVi : i P Iu Ď U , and so
Ů Ť

tVi : i P Iu P rU s. Thus u P rU s.
Generalising on u, it follows that rrU ss Ď rU s as desired.

Assume instead that u P U . It follows that
Ů

tuu P rU s, and so u P rU s

by L6.26. Thus U Ď rU s, and so rU s Ď rrU ss by L6.28. Together with
the above, rrU ss “ rU s for all U Ď IS .

L6.30 FpXq P P8S for all X Ď S.

Proof. Let X Ď S, and x P X. Thus partsSpxq “ idealSptxuq by
L6.18, and idealSptxuq P IS by L6.16. More generally, partsSpxq P IS
for all x P X, and so tpartsSpxq : x P Xu Ď IS , where we know by L6.29
that rtpartsSpxq : x P Xus “ rrtpartsSpxq : x P Xuss. By definition,
FpXq “ rtpartsSpxq : x P Xus, and so FpXq “ rFpXqs. Thus FpXq P P8S ,
where generalising on X Ď S concludes the proof.

L6.31 x P X iff partsSpxq P rtpartsSpyq : y P Xus for all x P S and X P PS .

Proof. Let x P S and X P PS where x P X. Of course, it follows that
partsSpxq P tpartsSpxq : x P Xu, where we know by definition that
Ů

tpartsSpxqu P rtpartsSpxq : x P Xus. Since x P S, it follows that
partsSpxq “ idealSptxuq by L6.18, and idealSptxuq P IS by L6.16,
and so partsSpxq P IS . Thus

Ů

tpartsSpxqu “ partsSpxq follows by
L6.26, and so partsSpxq P rtpartsSpxq : x P Xus.

Assume instead that partsSpxq P rtpartsSpyq : y P Xus. Thus there
is some Y Ď tpartsSpyq : y P Xu where partsSpxq “

Ů

Y . By definition,
Ů

Y “ idealSp
Ť

Y q, and so partsSpxq “ idealSp
Ť

Y q. We may then
let Z “ tz P X : partsSpzq P Y u, and so

Ť

Y “
Ť

tpartsSpyq : y P Zu.
Accordingly, partsSpxq “ idealSp

Ť

tpartsSpyq : y P Zuq, and so by
L6.24 we know that partsSpxq “

Ť

tpartsSpyq : y P Zu. Of course,
x P partsSpxq by Idempotency, and so x P

Ť

tpartsSpyq : y P Zu. Thus
x “ partsSpyq for some y P Z, and so x ‹ y “ y. Letting u P partsSpxq,
it follows that u ‹ x “ x, and so we may reason as follows:

u ‹ y “ u ‹ px ‹ yq

“ pu ‹ xq ‹ y

“ x ‹ y

“ y
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Thus it follows that u P partsSpyq. Generalising on u, it follows that
partsSpxq Ď partsSpyq. However, given that y P Z, we also know that
partsSpyq Ď

Ť

tpartsSpyq : y P Zu “ partsSpxq, from which it follows
that partsSpyq Ď partsSpxq. Given the above, partsSpxq “ partsSpyq,
and so x “ y by L6.20. Thus we may conclude that x P Z.

Recall from above that Z “ tz P X : partsSpzq P Y u. It follows that
Z Ď X, and so Z Ď X. However, we know by assumption that X P PS ,
and so X “ X. Thus Z Ď X, and so x P X given the above. Thus x P X
just in case partsSpxq P rtpartsSpyq : y P Xus.

L6.32 X Ď Y iff FpXq Ď FpY q, X,Y P PS .

Proof. Assume X Ď Y for some X,Y P PS . We may then observe
that tpartsSpxq : x P Xu Ď tpartsSpyq : y P Y u, and so it follows
by L6.28 that rtpartsSpxq : x P Xus Ď rtpartsSpyq : y P Y us. Thus
FpXq Ď FpY q.

Assume X Ę Y instead, and so x R Y for some x P X. Thus we
may conclude by L6.31 that partsSpxq P rtpartsSpyq : y P Xus but
partsSpxq P rtpartsSpyq : y P Y us. It follows that FpXq Ę FpY q.

L6.33 Fptxuq “ tpartsSpxqu for all x P S.

Proof. Let x P S, so Fptxuq “ rtpartsSpxq : x P txuus “ rtpartsSpxqus,
where rtpartsSpxqus “ t

Ů

tpartsSpxquu “ tidealSp
Ť

tpartsSpxququ.
Of course, tidealSp

Ť

tpartsSpxququ “ tidealSppartsSpxqqu. By L6.18
and L6.16, we also know that partsSpxq P IS , and so it follows by L6.22
that idealSppartsSpxqq “ partsSpxq. Thus Fptxuq “ tpartsSpxqu.

L6.34 FpXq ^ FpY q “ FpX ^ Y q for all X,Y P PS .

Proof. Let X,Y P PS , and assume Z P FpXq^FpY q. Thus Z “
Ů

tU, V u
for some U P FpXq and V P FpY q, and so Z “ idealSpU Y V q. We also
know that U “

Ů

tpartsSpxq : x P X 1u and V “
Ů

tpartsSpxq : x P Y 1u
for some X 1 Ď X and Y 1 Ď Y . If follows by definition that both:

U “ idealSp
ď

tpartsSpxq : x P X 1uq,

V “ idealSp
ď

tpartsSpxq : x P Y 1uq.

Given these identities, we may observe that the identities below follow by
definition or assumption with exception of p˚q which is given by L6.24:

Z “ idealSpU Y V q

“ idealSridealSp
ď

tpartsSpxq : x P X 1uq Y idealSp
ď

tpartsSpxq : x P Y 1uqs

p˚q “ idealSr
ď

tpartsSpxq : x P X 1u Y
ď

tpartsSpxq : x P Y 1us

“ idealSr
ď

tpartsSpxq Y partsSpyq : x P X 1, y P Y 1us

“
ğ

tpartsSpxq Y partsSpyq : x P X 1, y P Y 1u

Let z P partsSpxq Y partsSpyq for some x P X 1 and y P Y 1. By L6.19,
z P partsSpx ‹ yq, where x P X and y P Y given that X 1 Ď X “ X
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and Y 1 Ď Y “ Y . Thus z P partsSpx ‹ yq for x P X and y P Y , and so
z P tpartsSpwq : w P X ^ Y u. Generalising on z, it follows that:

tpartsSpxq Y partsSpyq : x P X, y P Y u Ď tpartsSpwq : w P X ^ Y u,
ğ

tpartsSpxq Y partsSpyq : x P X, y P Y u P rtpartsSpwq : w P X ^ Y us.

Given the above, Z P rtpartsSpwq : w P X^Y us. However, by definition,
rtpartsSpwq : w P X ^ Y us “ FpX ^ Y q, and so Z P FpX ^ Y q. Thus it
follows that FpXq ^ FpY q Ď FpX ^ Y q.

Assume instead that Z P FpX ^ Y q. It follows that Z “
Ů

J for
some J Ď tpartsSpwq : w P X ^ Y u. Thus there is some K Ď X ^ Y
where J “ tpartsSpwq : w P Ku. Hence it follows that:

Z “
ğ

J

“
ğ

tpartsSpwq : w P Ku

“ idealSp
ď

tpartsSpwq : w P Kuq

p:q “
ď

tpartsSpwq : w P Ku

p;q “ idealSpKq

Whereas p:q is given by L6.24, p;q holds by L6.23, where the remaining
identities follow from the above by definition. Consider the definitions:

X 1 “ tx P X : Dy P Y where x ‹ y P Ku,

Y 1 “ ty P Y : Dx P X where x ‹ y P Ku,

U “ idealSp
ď

tpartsSpxq : x P X 1uq,

V “ idealSp
ď

tpartsSpyq : y P Y 1uq.

We may then show that idealSpKq “ idealSpU YV q where U Ď X and
V Ď Y . Let k P K. Since K Ď X ^ Y , we know that k “ x ‹ y where
x P X and y P Y , and so x P X 1 and y P Y 1. Given that x P partsSpxq
and y P partsSpyq by Idempotency, both x P

Ť

tpartsSpxq : x P X 1u
and y P

Ť

tpartsSpyq : y P Y 1u. By L6.21, x P U and y P V . Letting
Z P IS where U Y V Ď Z, it follows that x, y P Z, and so x ‹ y P Z.
Generalising on Z, we may conclude that x ‹ y P idealSpU Y V q, and
so k P idealSpU Y V q. Thus K Ď idealSpU Y V q, and so by L6.17
idealSpKq Ď idealSpidealSpU Y V qq. Since idealSpU Y V q P IS by
L6.16, it follows that idealSpidealSpU Y V qq “ idealSpU Y V q by
L6.22, and so idealSpKq Ď idealSpU Y V q given the above.

In order to establish the converse inclusion, choose some W P IS
where K ĎW , and let w P U Y V . Consider the following cases:

Case 1: Assume w P U . By L6.24, U “
Ť

tpartsSpxq : x P X 1u,
and so w P partsSpxq for some x P X 1. It follows that w ‹ x “ x where
x “ a ‹ b for some a, b P X 1. Thus there are some u and v such that
a ‹ u P K and b ‹ v P K, and so both a ‹ u, b ‹ v PW given that K ĎW .
Since W P IS , both a, b PW , and so a ‹ b PW . Given the above, we may
conclude that w ‹ x P W , and so w P W as desired. Case 2: Assume
w P V . By L6.24, V “

Ť

tpartsSpyq : y P Y 1u, and so w P partsSpyq
for some y P Y 1. It follows that w ‹ y “ y where y “ c ‹ d for some
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c, d P Y 1. Thus there are some u and v such that c ‹ u P K and d ‹ v P K,
and so both c ‹ u, d ‹ v P W given that K Ď W . Since W P IS , both
c, d P W , and so c ‹ d P W . Given the above, we may conclude that
w ‹ y PW , and so w PW as desired.

Since w PW in both of the cases above, it follows that U Y V ĎW ,
and so tW P IS : K Ď W u Ď tW P IS : U Y V Ď W u. Thus we
know that

Ş

tW P IS : U Y V Ď W u Ď
Ş

tW P IS : K Ď W u, and so
idealSpU Y V q Ď idealSpKq by definition. Together with the inclusion
given above, it follow that idealSpKq “ idealSpU Y V q.

Thus we have Z “ idealSpKq “ idealSpU Y V q “
Ů

tU, V u. Since
X 1 Ď X and Y 1 Ď Y , both tpartsSpxq : x P X 1u Ď tpartsSpxq : x P Xu
and tpartsSpyq : y P Y 1u Ď tpartsSpyq : y P Y u. We may then observe:

U “
ğ

tpartsSpxq : x P X 1u P rtpartsSpxq : x P Xus “ FpXq,

V “
ğ

tpartsSpyq : y P Y 1u P rtpartsSpyq : y P Y us “ FpY q.

Having shown that Z “
Ů

tU, V u where U P FpXq and V P FpY q, it
follows that Z P FpXq^FpY q. Since Z P FpX^Y q was arbitrary, it follows
that FpX ^ Y q Ď FpXq ^ FpY q, and so FpXq ^ FpY q “ FpX ^ Y q.

L6.35 FpXq _ FpY q “ FpX _ Y q for all X,Y P PS .

Proof. Letting X,Y P PS , the inclusions given on the left hold by Sum,
where the inclusions on the right follow by L6.32:

X Ď X _ Y

Y Ď X _ Y

X ^ Y Ď X _ Y

FpXq Ď FpX _ Y q

FpY q Ď FpX _ Y q

FpX ^ Y q Ď FpX _ Y q.

Since FpX^Y q “ FpXq^FpY q by L6.34, we may conclude from the
above that FpXq Y FpY q Y pFpXq ^ FpY qq Ď FpX _ Y q. Thus by L6.8,
we may conclude that FpXq _ FpY q Ď FpX _ Y q.

Choose some x P X. Since tpartsSpxqu Ď tpartsSpxq : x P Xu, we
know by definiton that

Ů

tpartsSpxqu P FpXq. We also know by L6.16
that partsSpxq P IS , and so

Ů

tpartsSpxqu “ partsSpxq by L6.26.
Thus partsSpxq P FpXq, and so tpartsSpxq : x P Xu Ď FpXq follows by
generalising on x P X. By analogous arguments:

tpartsSpyq : y P Y u Ď FpY q

tpartsSpzq : z P X ^ Y u Ď FpX ^ Y q.

However, FpX ^ Y q “ FpXq ^ FpY q by L6.34, and so it follows that:

tpartsSpzq : z P X Y Y Y pX ^ Y qu Ď FpXq Y FpY q Y pFpXq ^ FpY qq.

Thus tpartsSpzq : z P X _ Y u Ď FpXq _ FpY q by Sum and L6.8. By
L6.28, rtpartsSpzq : z P X _ Y us Ď rFpXq _FpY qs, and so by definition
FpX_Y q Ď rFpXq_FpY qs. However, FpXq_FpY q “ rFpXqYFpY qs, and
so FpX_Y q Ď rrFpXqYFpY qss. Since X,Y P PS , we know by L6.30 that
both FpXq,FpY q P P8S , and so FpXq,FpY q Ď IS . Thus FpXqYFpY q Ď IS ,
and so rrFpXqYFpY qss “ rFpXqYFpY qs by L6.29. We may then conclude
that FpX _Y q Ď rFpXqYFpY qs “ FpXq_FpY q, and so by the inclusion
established above, we know that FpXq _ FpY q “ FpX _ Y q.

44



§6 Infinite Fusion Benjamin Brast-McKie

Given these results, we are now in a position to extend the mapping F from
propositions to models. In particular, consider the following:

F-Map: Let MF “ xIS ,
Ů

, | ¨ |Fy where M “ xS, ‹, | ¨ |y P C and | ¨ |F “ Fp| ¨ |q.

I will then show that F : C Ñ C8 is a strong homomorphism with respect to
logical consequence. To begin with, consider the following lemmas.

L6.36 MF P C8 for all M P C.

Proof. Let M P CS where S “ xS, ‹y. By L6.25, I “ xIS ,
Ů

y is an
infinite state space, where I PM8 by L6.26 and L6.27. Letting p P L be
arbitrary, we may then observe that |p| Ď S, and so Fp|p|q P P8S by L6.30.
Generalising on p P L, it follows that MF “ xIS ,

Ů

, | ¨ |Fy P C8.

L6.37 |A|F “ Fp|A|q for all A P pfspL´q.

Proof. The proof goes by induction on complexity where the base case
is given by F-Map. Assume for induction that |A|F “ Fp|A|q for all
A P pfspL´q where comppAq ă n. Let A P pfspAq with comppAq “ n.
It follows that either A “ B ^ C or A “ B _ C, where in either case
|B|F “ Fp|B|q and |C|F “ Fp|C|q by hypothesis.

Case 1: Assume A “ B ^ C. We may then reason as follows:

s P |B ^ C|F iff MF, s , B ^ C

iff s “
ğ

ta, bu where MF, a , B and MF, b , C

iff s “
ğ

ta, bu where a P |B|F and b P |C|F

p1q iff s “
ğ

ta, bu where a P Fp|B|q and b P Fp|C|q

iff s P Fp|B|q ^ Fp|C|q.

p2q iff s P Fp|B| ^ |C|q.

p3q iff s P Fp|B ^ C|q.

Whereas (1) follows by hypothesis, (2) is given by L6.34, and (3) follows
from L3.4. All of the other biconditionals are immediate from the
definitions. Thus |B ^ C|F “ Fp|B ^ C|q and so |A|F “ Fp|A|q.

Case 2: Assume B “ C _ C instead. Thus if follows that:

s P |B _ C|F iff MF, s , B _ C

iff MF, s , B, or MF, s , C, or MF, s , B ^ C

iff s P |B|F, or s P |C|F, or s P |B ^ C|F

p1q iff s P Fp|B|q, or s P Fp|C|q, or s P Fp|B ^ C|q

p2q iff s P Fp|B|q Y Fp|C|q Y pFp|B|q ^ Fp|C|qq

p3q iff s P Fp|B|q _ Fp|C|q.

p4q iff s P Fp|B| _ |C|q.

p5q iff s P Fp|B _ C|q.

As above, (1) is given by hypothesis, whereas (2) follows by the argument
given in Case 1, (3) holds by L6.8, (4) is given by L6.35, and (5) follows
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from L3.3. Since the other biconditionals all hold by definition, we may
conclude that |B _ C|F “ Fp|B _ C|q and so |A|F “ Fp|A|q.

Since |A|F “ Fp|A|q holds in both of the cases above, we may conclude
by induction that |A|F “ Fp|A|q for all A P pfspL´q as desired.

P6.2 |A|F P P8S for all M P C and A P pfspL´q.

Proof. Assume M P C. By P3.1, |A| P PS , and so |A| Ď S. Thus
Fp|A|q P P8S by L6.30, and so |A|F P P8S follows by L6.37.

P6.3 M ( ϕ iff MF ( ϕ, for all M P C and ϕ P wfspL´q.

Proof. Let M “ xS, ‹, |¨|y for some M P CS . The proof goes by induction
on the complexity. Assume ϕ P wfspL´q where comp`pϕq “ 0. Thus
either ϕ “ $A or ϕ “ A�B for some A,B P pfspL´q.

Case p$q: Assume ϕ “ $A for A P pfspL´q. Thus |A| P PS by P3.1,
and so s P |A| just in case partsSpsq P rtpartsSpxq : x P |A|us for any
s P S by L6.31. Since Fp|A|q “ rtpartsSpxq : x P |A|us by definition,
and |A|F “ Fp|A|q by L6.37, we may conclude the following:

s P |A| iff partsSpsq P |A|
F. (˚)

Assume M ( ϕ. It follows that M ( $A, and so |A| “ tau for some
a P S. By L6.33, Fptauq “ tpartsSpaqu, and so |A|F “ tpartsSpaqu.
Thus MF ( $A, and so we may conclude that MF ( ϕ.

Assume MF ( ϕ instead. Thus MF ( $A, and so |A|F “ tbu for
some b P IS . Since |A|F “ rtpartsSpxq : x P |A|us by definition, we
may conclude that tbu “ t

Ů

Y : ∅ ‰ Y Ď tpartsSpxq : x P |A|uu.
It follows that |A| ‰ ∅, for otherwise tbu “ ∅, and so there is some
x P |A|. In order to prove uniqueness, assume y P |A|. By p˚q, both
partsSpxq, partsSpyq P |A|

F, and so partsSpxq “ partsSpyq given that
|A|F “ tbu. Thus x “ y by L6.20, and so every y P |A| is such that
x “ y. Thus |A| “ txu, and so M ( $A. It follows that M ( ϕ, and so
together with the above, M ( ϕ just in case MF ( ϕ.

Case p�q: Assume ϕ “ A � B for A,B P pfspL´q. By P3.1 both
|A|, |B| P PS , and so |A| Ď |B| just in case Fp|A|q Ď Fp|B|q by L6.32.
By L6.37, |A|F “ Fp|A|q and |B|F “ Fp|B|q, and so we know:

|A| Ď |B| iff |A|F Ď |B|F. (˚)

Thus M ( A � B just in case MF ( A � B, or equivalently, M ( ϕ
just in case MF ( ϕ as desired. Given the above, M ( ϕ just in case
MF ( ϕ for all ϕ P wfspL´q such that comp`pϕq “ 0.

Since M agree MF on all atomic sentences of L´, it follows by routine
induction that M ( ϕ just in case MF ( ϕ for all ϕ P wfspL´q.

By P6.3, F : C Ñ C8 is a strong homomorphism with respect to (. It
remains to construct a function B : C8 Ñ C with the same structure preserving
property. Given any Mu P C8 where Mu “ xS,

Ů

, | ¨ |uy let:

Backwards: BpXq “ X for all X P P8S .
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B-Map: Let MB
u “ xS, ‹, | ¨ |

B
u y where Mu “ xS,

Ů

, | ¨ |uy P C8 and | ¨ |Bu “ Bp| ¨ |uq.

The following lemma proves that B preserves semantic entailment in evaluating
wfs of L´ at finite models in C rather than infinite models in C8.

L6.38 |A|Bu “ Bp|A|uq for all Mu P C8 and A P pfspL´q.

Proof. The proof goes by induction on complexity where the base case
is given by B-Map. Assume for induction that |A|Bu “ Bp|A|uq for all
A P pfspL´q where comppAq ă n. Let A P pfspAq with comppAq “ n.
It follows that either A “ B ^ C or A “ B _ C, where in either case
|B|Bu “ Bp|B|uq and |C|Bu “ Bp|C|uq by hypothesis.

Case 1: Assume A “ B ^ C. We may then reason as follows:

s P |B ^ C|Bu iff MB
u , s , B ^ C

iff s “ a ‹ b where MB
u , a , B and MB

u , b , C

iff s “ a ‹ b where a P |B|Bu and b P |C|Bu

p˚q iff s “ a ‹ b where a P Bp|B|uq and b P Bp|C|uq

iff s “
ğ

ta, bu where a P |B|u and b P |C|u

iff Mu, s , B ^ C

iff s P |B ^ C|u.

Whereas (˚) follows by hypothesis, all of the other biconditionals are
immediate from the definitions. Thus |B^C|Bu “ |B^C|u “ Bp|B^C|uq
and so |A|Bu “ Bp|A|uq as desired.

Case 2: Assume B “ C _ C instead. Thus if follows that:

s P |B _ C|Bu iff MB
u , s , B _ C

iff MB
u , s , B, or MB

u , s , C, or MB
u , s , B ^ C

iff s P |B|Bu , or s P |C|Bu , or s P |B ^ C|Bu

p˚q iff s P Bp|B|uq, or s P Bp|C|uq, or s P Bp|B ^ C|uq

iff Mu, s , B, or Mu, s , C, or Mu, s , B ^ C

iff Mu, s , B _ C

iff s P |B _ C|u.

As above, (*) is given by hypothesis, whereas the other biconditionals
follow by definition. Thus |B _ C|Bu “ |B _ C|u “ Bp|B _ C|uq and so
|A|Bu “ Bp|A|uq. Since |A|Bu “ Bp|A|uq holds in both of the cases above,
it follows by induction that |A|Bu “ Bp|A|uq for all A P pfspL´q.

P6.4 Mu ( ϕ iff MB
u ( ϕ, for all Mu P C8 and ϕ P wfspL´q.

Proof. Assume Mu P C8 and ϕ P wfspL´q. The proof goes by induction
on the complexity of ϕ P pL´q. Assume to start that ϕ P wfspL´q
where comp`pϕq “ 0. Thus either ϕ “ $A or ϕ “ A � B for some
A,B P pfspL´q. I will consider these cases in order.

Case p$q: Assume ϕ “ $A for A P pfspL´q. Since |A|Bu “ Bp|A|uq
by the L6.38, where |A|u “ Bp|A|uq by B-Map, it follows that |A|u “ tsu
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for some s P S just in case |A|Bu “ tsu for some s P S. Thus Mu ( $A
just in case MB

u ( $A, and so Mu ( ϕ just in case MB
u ( ϕ.

Case p�q: Assume ϕ “ A�B for A,B P pfspL´q. Thus by L6.38,
both |A|Bu “ Bp|A|uq and |B|Bu “ Bp|B|uq, where |A|u “ Bp|A|uq
and |B|u “ Bp|B|uq by B-Map, we know |A|u Ď |B|u just in case
|A|Bu Ď |B|

B
u . It follows that Mu ( A � B just in case MB

u ( A � B,
and so we may conclude that Mu ( ϕ just in case MB

u ( ϕ as desired.
Given that M agree MB on all atomic sentences of L´, it follows by

a standard induction that M ( ϕ iff MB ( ϕ for all ϕ P wfspL´q.

7 Negation

Recall that negation was excluded from the pfs of L´. I will now extend
the results proven above to a logic in which this simplification is dropped.
Accordingly, I will take ‘V’ and ‘

J́

’ to abbreviate ‘ T ’ and ‘ K’ respectively,
letting L be the result of excluding V and

J́

from the primitive symbols of L´
while including ‘ ’. We may then amend the formation rules as follows:

( ) If A is a pfs of L, then  A is a pfs of L.

Let pfs pLq be the set of all pfss of L once the clause for negation has been
added to the formation rules given above, replacing ‘L´’ with ‘L’ throughout.
We may then let wfs pLq be the set of all wfss of L generated recursively
from pfs pLq via atoms pLq in the same manner as before. In addition to the
axioms and rules of inference for UGSN, we may now include the following:

Negation Axioms

NA1 A�  A.

NA3  A^ B � pA_Bq.

NA5  A_ B � pA^Bq.

NA2   A�A.

NA4  pA_Bq� A^ B.

NA6  pA^Bq� A_ B.

Let $ugs be the smallest relation closed under the axioms and rules given both
here and in §2. A theorem of The Specific Logic of Unilateral Ground (UGS)
is any ϕ P wfs pLq where $ugs ϕ. We may then derive the following:

Negation Equivalences

E15  A^ B «  pA_Bq.

E16  A_ B «  pA^Bq.

E17 A «   A.

It remains to adapt the semantics to accommodate negation. In particular,
every proposition will be shown to have a unique inverse.

Following Fine (2017b,c), I will take propositions to be ordered pairs of
sets of states, where the states belonging to the first set may be referred to as
the exact verifiers and the second set as the exact falsifiers. More specifically,
for any S PM8, we may define the space of bilateral propositions as follows:
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Bilateral S-Propositions: P˘S “ txV, F y : V, F P P8S u.

Given any S PM8 where S “ xS,
Ů

y, a bilateral S-model is any ordered triple
M “ xS,

Ů

, | ¨ |y where every pi P L is such that |pi| “ x|pi|
`, |pi|

´y for some
|pi|

˘ P PS . Letting C˘S be the class of all bilateral S-models for any S PM8,
and C˘ “

Ť

tC˘S : S PMu, I will adopt the following bilateral pre-semantics:

Bilateral Pre-Semantics:

pT q` M, s , T iff s “ s.

pT q´ M, s - T iff s “ ‚.

ppiq
` M, s , pi iff s P |pi|

`.

ppiq
´ M, s - pi iff s P |pi|

´.

pKq` M, s , K iff s ‰ s.

pKq´ M, s - K iff s “ ˝.

p q` M, s ,  A iff M, s - A.

p q´ M, s -  A iff M, s , A.

p^q` M, s , A^B iff s “
Ů

td, tu where M, d , A and M, t , B.

p^q´ M, s - A^B iff M, s - A or M, s - B or M, s - A_B.

p_q` M, s , A_B iff M, s , A or M, s , B or M, s , A^B.

p_q´ M, s - A_B iff s “
Ů

td, tu where M, d - A and M, t - B.

Whereas T is verified by every state and falsified by the full state which we
may think of as most impossible state, K is verified by no state and falsified by
the null state which may think of as obtaining trivially. We may then observe
that the negation clauses formalise the idea that the exact verifiers for  A are
exact falsifiers for A, and the exact falsifiers for  A are exact verifiers for A.
For instance, the state of affairs of my sitting exactly verifies ‘I am sitting’ just
as much as it exactly falsifies its negation ‘I am not sitting’. Whereas p^q`

and p_q` are the same as the clauses p^q and p_q given in the Unilateral
Pre-Semantics above, we find in p_q´ that only the fusion of falsifiers for
both disjuncts will falsify the disjunction as a whole, and in p^q´ an exact
falsifier for either conjunct will exactly falsify the conjunction as a whole, as
well as a fusion of exact falsifiers for each of the conjuncts.

Having stated the definition of , and -, we may then expand the domain
of the functions | ¨ |˘ to include all pfs A of L as follows:

Bilateral Valuation: s P |A|` iff M, s , A.

s P |A|´ iff M, s - A.

We may then adopt |A| “ x|A|`, |A|´y as standard notation for the proposition
that the pfs A of L expresses in M. The semantic clauses for the wfss of L are
identical to those given in §3 with the exception of replacing | ¨ | in Unilateral
Semantics with | ¨ |`. The atomic clauses will then read:

Bilateral Semantics:
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p�q˘ M ( A�B iff |A|` Ď |B|`.

p$ q˘ M` ( $A iff there is exactly one s P |A|`.

The semantic clauses for  ,^, and _ are the same as given before. Accordingly,
we may let Γ (C˘ ϕ just in case for all M P C˘, if M ( γ for all γ P Γ, then
M ( ϕ. As usual, a wfs ϕ is C˘-valid just in case (C˘ ϕ.

Given the addition of falsifiers to the semantics, we are now in a position
to introduce the following operations where Pi “ xP

`
i , P

´
i y for all i P I:

Bilateral Product: Let
Ź

tPi : i P Iu “ x
Ź

tP`i : i P Iu,
Ž

tP´i : i P Iuy.

Bilateral Sum: Let
Ž

tPi : i P Iu “ x
Ž

tP`i : i P Iu,
Ź

tP´i : i P Iuy.

As before, it will be useful to consider binary analogues of bilateral product and
sum, letting P ^Q “

Ź

tP,Qu and P _Q “
Ž

tP,Qu. We may then introduce
the following unary inversion operator, where X,Y P P8S are arbitrary:

Inversion:  xX,Y y “ xY,Xy.

The reason for introducing falsifiers in addition to verifiers is best exhibited by
the definition given above, since a set of verifiers on their own cannot determine
a unique set of verifiers for its inverse. By taking propositions to be ordered
pairs of a set of verifiers and set of falsifiers, inverses are uniquely determined
by permuting the sets of verifiers and falsifiers.

Given the expanded formation rules for the pfss of L, we may observe
that AL “ xpfs pLq, ,^,_, T ,Ky and A˘S “ xP˘S , ,^,_, T ,Ky are both
algebras with the same signature for any S PM8, where every model M P C˘S
induces an L-homomorphism | ¨ | : AL Ñ A˘S since A,B P pfs pLq:

P7.1 |A| P P˘S .

L7.1 | A| “  |A|.

L7.2 |A^B| “ |A| ^ |B|.

L7.3 |A_B| “ |A| _ |B|.

The results above show that the structure encoded by the sentential operators
^,_, and  is preserved by every model M P C˘. Additionally, it is easy to
show that for any M P C˘, the bilateral extremal propositions are as follows:

Bilateral Extremal Propositions

L7.4: |T | “ xS, t‚uy.

L7.5: |K| “ x∅, t˝uy.

L7.6: |V| “ xt‚u, Sy.

L7.7: |

J́

| “ xt˝u,∅y.

I will now turn to establish the following theorem, extending the Soundness
and Completeness results proven above to the expanded system UGS.
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T4 (Negation Extension) Σ (C˘ ϕ iff Σ $ugs ϕ.

Proof. In order to extend both Soundness and Completeness to UGS, I will
introduce the functions neg : wfs pLq Ñ wfspL´q and N : C8 Ñ C˘ where
negpΣq “ tnegpσq : σ P Σu, proving the following results:

P7.2: Σ $ugs ϕ iff negpΣq $ugsn negpϕq for all ΣY tϕu Ď wfs pLq.

P7.3: M ( negpϕq iff MN ( ϕ for all M P C8 and ϕ P wfs pLq.

P7.4: N : C8 Ñ C˘ is a surjection.

Given the above, we may then establish both the Soundness and Completeness
for UGS over C˘ by means of the following argument:

Σ &ugs ϕ iff1 negpΣq &ugsn negpϕq

iff2 negpΣq *C8 negpϕq

iff3 some M P C8 is such that M ( negpσq for all σ P Σ but M * negpϕq

iff4 some Mu P C˘ is such that Mu ( σ for all σ P Σ but Mu * ϕ

iff5 Σ *C˘ ϕ.

Here (1) is given by P7.2, (2) follows from Theorem T3, both (3) and (5)
hold by definition. It remains to establish (4).

Assume for discharge that there is some M P C8 such that M ( negpσq
for all σ P Σ but where M * negpϕq. It follows by P7.3 that MN ( σ for all
σ P Σ but MN * ϕ, where existentially generalising on MN P C˘ completes
the forward direction. Assume instead that there is some Mu P C˘ such that
Mu ( σ for all σ P Σ but where Mu * ϕ. By P7.4, we know that there there
is some M P C8 where MN “Mu. Thus it follows by P7.3 that M ( negpσq
for all σ P Σ but where M * negpϕq, thereby completing the reverse direction.
We may then conclude that Σ (C˘ ϕ iff Σ $ugs ϕ.

The remainder of the present section will be devoted to proving the results
stated above. The following section will draw connections with bilattice theory.

R2˘ If Γ $ugs ϕ, then ΓrA{ps $ugs ϕrA{ps. (Uniform Substitution)

Proof. The proof is similar to AR2, where identical reasoning applies
to the axioms NA2 – NA6 and the axioms and rules in UGSN.

E15 $ugsn  A^ B «  pA_Bq.

Proof. Follows from NA3 and NA4.

E16 $ugsn  A_ B «  pA^Bq.

Proof. Follows from NA5 and NA6.

E17 $ugsn A «   A.
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Proof. Follows from NA1 and NA2.

L7.1 | A| “ x|A|´, |A|`y if M P C˘ and |A| P P˘S .

Proof. Given the semantics for negation, we know that:
s P | A|` iff M, s ,  A

iff M, s - A

iff s P |A|´. r` s

s P | A|´ iff M, s -  A

iff M, s , A

iff s P |A|`. r´ s

It follows that | A|` “ |A|´ and | A|´ “ |A|`, and so we may conclude
that | A| “ x|A|´, |A|`y as desired.

L7.2 |A^B| “ x|A|` ^ |B|`, |A|´ _ |B|´y if M P C˘ and |A|, |B| P P˘S .

Proof. Assume M P C˘ and |A|, |B| P P˘S . We first demonstrate that
|A^B|` “ |A|` ^ |B|` and |A_B|´ “ |A|´ ^ |B|´ as follows:

s P |A^B|` iff M, s , A^B

iff s “
ğ

td, tu where M, d , A and M, t , B

iff s “
ğ

td, tu where d P |A|` and t P |B|`

iff s P |A|` ^ |B|`. r`^s

s P |A_B|´ iff M, s - A_B

iff s “
ğ

td, tu where M, d - A and M, t - B

iff s “
ğ

td, tu where d P |A|´ and t P |B|´

iff s P |A|´ ^ |B|´. r´_s

The biconditionals in the arguments above hold by definition. Given that
|A|, |B| P P˘S , it follows that |A|´, |B|´ P P8S . Consider the following:

si P |A^B|
´ iff M, si - A^B

iff M, si - A, or M, si - B, or M, si - A_B

iff si P |A|
´, or si P |B|

´, or si P |A_B|
´

iff si P |A|
´ Y |B|´ Y |A_B|´

p:q iff si P |A|
´ Y |B|´ Y p|A|´ ^ |B|´q

p;q iff s P |A|´ _ |B|´. r´^s

Each of the biconditionals above hold by definition with the exception of
p:q which follows from r´_s, and p;q which is given by L6.8. Thus it follows
that |A^B|´ “ |A|´ _ |B|´. Since |A^B| “ x|A^B|`, |A^B|´y by
Valuation, we know that |A^B| “ x|A|` ^ |B|`, |A|´ _ |B|´y.

L7.3 |A_B| “ x|A|` _ |B|`, |A|´ ^ |B|´y if M P C˘ and |A|, |B| P P˘S .
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Proof. Assume |A|, |B| P P˘S . We know |A_B| “ x|A_B|`, |A_B|´y
by Valuation, and |A|`, |B|` P P8S given that |A|, |B| P P˘S . Thus:

s P |A_B|` iff M, s , A_B

iff M, s , A, or M, s , B, or M, s , A^B

iff s P |A|`, or s P |B|`, or s P |A^B|`

iff s P |A|` Y |B|` Y |A^B|`

p:q iff s P |A|` Y |B|` Y p|A|` ^ |B|`q

p;q iff s P |A|` _ |B|`. r`_s

The biconditionals above hold by definition with the exception of p:q
which follows from r`^s, and p;q which is given by L6.8. Thus it follows
that |A_B|` “ |A|`_|B|`, and since |A_B|´ “ |A|´^|B|´ as shown
by r´_s in L7.2, we know that |A_B| “ x|A|` _ |B|`, |A|´ ^ |B|´y.

P7.1 |A| P P˘S for all M P C˘S and A P pfs pLq.

Proof. Assume M P C˘. By definition, |p| P P˘S for every p P L, where
|e| P P˘S for all e P E by Bilateral Extremal Propositions, thereby
establishing the base case. Assume |A|, |B| P P˘S for induction. Thus
|A|˘, |B|˘ P P8S , where we know by L7.1, L7.2, and L7.3 that:

| A| “ x|A|´, |A|`y

|A^B| “ x|A|` ^ |B|`, |A|´ _ |B|´y

|A_B| “ x|A|` _ |B|`, |A|´ ^ |B|´y.

We know by L6.4 and L6.5 that |A|` ^ |B|`, |A|´ _ |B|´, |A|` _ |B|`,
and |A|´ ^ |B|´ are members of P8S , and so | A|, |A^B|, |A_B| P P˘S .
It follows by induction that |A| P PS for all A P pfs pLq.

L7.4 |T | “ xS, t‚uy.

Proof. Follows from the Bilateral Pre-Semantics.

L7.5 |K| “ x∅, t˝uy.

Proof. Follows from the Bilateral Pre-Semantics.

L7.6 |V| “ xt‚u, Sy.

Proof. By abbreviation, |V| “ | T |, where | T | “  |T | by L7.1. Thus
 |T | “  xS, t‚uy by L7.4, where  xS, t‚uy “ xt‚u, Sy holds by definition.
We may then conclude that |V| “ xt‚u, Sy as needed.

L7.7 |

J́

| “ xt˝u,∅y.

Proof. By abbreviation, |

J́

| “ | K|, where | K| “  |K| by L7.1. Thus
 |K| “  x∅, t˝uy by L7.5, where  x∅, t˝uy “ xt˝u,∅y by definition.
We may then conclude that |

J́

| “ xt˝u,∅y as needed.
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We may now introduce the function neg : wfs pLq Ñ wfspL´q which works
by first distributing negation over disjunction and conjunction in the sub-pfs
of any ϕ P wfs pLq, after which the literals which occur therein are mapped
to unique sentence letters in L. In particular, consider the following:

negpT q “ T
negpKq “ K

negp T q “ V
negp Kq “

J́

negppiq “ p2i

negp piq “ p2i`1

negp  Aq “ negpAq

negpA^Bq “ negpAq ^ negpBq

negpA_Bq “ negpAq _ negpBq

negp pA_Bqq “ negp Aq ^ negp Bq

negp pA^Bqq “ negp Aq _ negp Bq

negpA�Bq “ negpAq� negpBq

negpA�| Bq “ negpAq�| negpBq

negp$Aq “ $ negpAq

negp $Aq “  $ negpAq

negp  ϕq “   negpϕq

negpϕ^ ψq “ negpϕq ^ negpψq

negpϕ_ ψq “ negpϕq _ negpψq

negp pϕ_ ψqq “  pnegpϕq _ negpψqq

negp pϕ^ ψqq “  pnegpϕq ^ negpψqq.

The function neg works by replacing the elements of pfs pLq which occur in
any ϕ P wfs pLq with pfspL´q, thereby returning a sentence which belongs to
wfspL´q. We may then show that neg : wfs pLq Ñ wfspL´q as follows.

L7.8 negpAq P pfspL´q for all A P pfs pLq.

Proof. Follows by a routine induction proof.

L7.9 negpϕq P wfspL´q for all ϕ P wfs pLq.

Proof. Follows from L7.8 by a routine induction proof.

Having defined the function neg : wfs pLq Ñ wfspL´q, we may now draw
on uniform substitution in order to define a function gen : wfspL´q Ñ wfs pLq:

Substitution: genpAq “ Ar K{ J́

sr T {Vsrpi{p2isr pi{p2i`1s

genpϕq “ ϕr K{

J́

sr T {Vsrpi{p2isr pi{p2i`1s.
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The following two lemmas show that genpnegpϕqq and ϕ are ground-theoretically
equivalent for all ϕ P wfs pLq.

L7.10 $ugs genpnegpAqq « A for all A P pfs pLq.

Proof. Let A P pfs pLq. The proof goes by induction on complexity.
Assume to start that comppAq ă 2. Thus either: (1) A “ T ; (2) A “  T ;
(3) A “ K; (4) A “  K; (5) A “ pi; or (6) A “  pi. Consider:

Case 1: Assume A “ T . Thus negpAq “ T , so genpnegpAqq “ T . We may then

conclude that genpnegpAqq “ A.

Case 2: Assume A “  T . Thus negpAq “ V, and so genpnegpAqq “  T . We

may then conclude that genpnegpAqq “ A.

Case 3: Assume A “ K. Thus negpAq “ K, so genpnegpAqq “ K. We may then

conclude that genpnegpAqq “ A.

Case 4: Assume A “  K. Thus negpAq “

J́

, and so genpnegpAqq “  K. We

may then conclude that genpnegpAqq “ A.

Case 5: Assume A “ pi. Thus negpAq “ p2i, and so genpnegpAqq “ A. We may

then conclude that genpnegpAqq “ A.

Case 6: Assume A “  pi. Thus negpAq “ p2i`1, and so genpnegpAqq “ A. We

may then conclude that genpnegpAqq “ A.

Since genpnegpAqq “ A holds in each of the cases above, we know by E1
that $ugs genpnegpAqq « A, thereby completing the base case.

Assume for induction that $ugs genpnegpAqq « A for all A P pfs pLq
such that comppAq ă n. Let A P pfs pLq be such that comppAq “ n. It
follows that either: (1) A “   B; (2) A “ B ^ C; (3) A “ B _ C; (4)
A “  pB _ Cq; or (5) A “  pB ^ Cq. Consider the following:

Case 1: Assume A “   B. By definition, negpAq “ negpBq, and so
genpnegpAqq “ genpnegpBqq where$ugs genpnegpBqq « B by hypothesis.
Thus if follows that $ugs genpnegpAqq « B. Since $ugs B «   B by
E17, we may conclude that $ugs genpnegpAqq «   B by GA9, and so
$ugs genpnegpAqq « A follows by assumption.

Case 2: Assume A “ B ^ C. Thus negpAq “ negpBq ^ negpCq, and
so genpnegpAqq “ genpnegpBq ^ negpCqq. It follows by definition that
genpnegpBq ^ negpCqq “ genpnegpBqq ^ genpnegpCqq, where we know
that $ugs genpnegpBqq « B and $ugs genpnegpCqq « C by hypothesis.
It follows that $ugs genpnegpBqq ^ genpnegpCqq « B ^ C by GA8, and
so $ugs genpnegpAqq « A follows from the identities above.

Case 3: Assume A “ B _ C. Thus negpAq “ negpBq _ negpCq, and
genpnegpAqq “ genpnegpBq _ negpCqq. However, we know by definition
that genpnegpBq _ negpCqq “ genpnegpBqq _ genpnegpCqq, where both
$ugs genpnegpBqq « B and $ugs genpnegpCqq « C follow by hypothesis.
Additionally, $ugs B �B _ C and $ugs C �B _ C by GA1 and GA2,
and so $ugs genpnegpBqq � B _ C and $ugs genpnegpCqq � B _ C by
GA9. Thus $ugs genpnegpBqq _ genpnegpCqq�B _ C follows by AR1.
Similarly, we know that $ugs genpnegpBqq�genpnegpBqq_genpnegpCqq
and $ugs genpnegpCqq�genpnegpBqq_genpnegpCqq by GA1 and GA2,
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and so it follows that both $ugs B � genpnegpBqq _ genpnegpCqq and
$ugs C � genpnegpBqq _ genpnegpCqq by GA9. Thus we know by AR1
that $ugs B _ C � genpnegpBqq _ genpnegpCqq, and so given the above,
$ugs genpnegpBqq _ genpnegpCqq « B _ C. Thus we may conclude by
the identities above that $ugs genpnegpAqq « A as desired.

Case 4: Assume A “  pB_Cq. Thus negpAq “ negp Bq^negp Cq,
and so genpnegpAqq “ genpnegp Bqq ^ genpnegp Cqq. By hypothesis,
$ugs genpnegp Bqq «  B and $ugs genpnegp Cqq «  C, and so by
GA8, $ugs genpnegp Bqq ^ genpnegp Cqq «  B ^ C. Additionally,
we know that $ugs  B ^ C «  pB ^ Cq by E15, and so it follows by
GA9 that $ugs genpnegp Bqq ^ genpnegp Cqq «  pB _Cq. Given the
identities above, we may conclude that $ugs genpnegpAqq « A.

Case 5: Assume A “  pB^Cq. Thus negpAq “ negp Bq_negp Cq,
and so genpnegpAqq “ genpnegp Bq_negp Cqq. It follows by definition
that genpnegp Bq_negp Cqq “ genpnegp Bqq_genpnegp Cqq, where
$ugs genpnegp Bqq «  B and $ugs genpnegp Cqq «  C by hypothesis.
By GA1 and GA2, $ugs  B� B_ C and $ugs  C� B_ C, and
so $ugs genpnegp Bqq� B_ C and $ugs genpnegp Cqq� B_ C by
GA9. Thus $ugs genpnegp Bqq_ genpnegp Cqq� B_ C follows by
AR1. Similarly, $ugs genpnegp Bqq� genpnegp Bqq _ genpnegp Cqq
and $ugs genpnegp Cqq�genpnegp Bqq_genpnegp Cqq follow by GA1
and GA2, and so by GA9 $ugs  B � genpnegp Bqq _ genpnegp Cqq
and $ugs  C � genpnegp Bqq _ genpnegp Cqq. Thus we may conclude
that $ugs  B _  C � genpnegp Bqq _ genpnegp Cqq by AR1, and
so given the above, $ugs genpnegp Bqq _ genpnegp Cqq «  B _  C.
However, we also know by E16 $ugs  B_ C «  pB^Cq, and so again
by GA9 it follows that $ugs genpnegp Bqq_genpnegp Cqq «  pB^Cq.
Thus by the identities above $ugs genpnegpAqq « A as desired.

Thus$ugs genpnegpAqq « A holds in each of the cases above, and so it
follows by induction that $ugs genpnegpAqq « A for all A P pfs pLq.

L7.11 $ugs genpnegpϕqq Ø ϕ, for all ϕ P wfs pLq.

Proof. Assume ϕ P wfs pLq. The proof goes by induction where we
may assume to start that comp`pϕq “ 0. Thus either ϕ “ A � B for
some A,B P pfs pLq, or else ϕ “ $A for some A P pfs pLq.

Case I: Assume ϕ “ A � B for some A,B P pfs pLq. It follows
that genpnegpϕqq “ genpnegpAqq� genpnegpBqq, and so by L7.10 both
$ugs genpnegpAqq « A and $ugs genpnegpBqq « B. Thus we know by
GA9 that $ugs pgenpnegpAqq � genpnegpBqqq Ø pA � Bq, and so it
follows that $ugs genpnegpϕqq Ø ϕ given the identity above.

Case II: Assume ϕ “ $A for some A P pfs pLq. Thus it follows that
genpnegpϕqq “ $ genpnegpAqq, where $ugs genpnegpAqq « A by L7.10.
By SP2, genpnegpAqq « A $ugs $ genpnegpAqq Ø $A, and so we may
conclude that $ugs genpnegpϕqq Ø ϕ.

Since $ugs genpnegpϕqq Ø ϕ holds in both of the base cases, we
know that $ugs genpnegpϕqq Ø ϕ. We may then conclude by a routine
induction proof that $ugs genpnegpϕqq Ø ϕ for all ϕ P wfs pLq.
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P7.2 Σ $ugs ϕ iff negpΣq $ugsn negpϕq, for all ΣY tϕu Ď wfs pLq.

Proof. Let Σ Y tϕu Ď wfs pLq, and assume Σ $ugs ϕ. We argue by
induction on the length of proof, where we assume to start that Σ $0

ugs ϕ.
It follows that Σ $ugs ϕ holds by one of the rules or axioms of UG.

Case GA1: Assume Σ $ugs ϕ follows by GA1, and so Σ “ ∅ and
ϕ “ A � A _ B for some A,B P pfs pLq. However, we know by L7.8
that negpAq, negpBq P pfspL´q, and so $ugsn negpAq�negpAq_negpBq
since GA1 belongs to UGSN. Thus $ugsn negpA�A_Bq as desired. We
may then conclude that negpΣq $ugsn negpϕq. I will omit consideration
of the other grounding rules and axioms, all of which are similar.

Case SP1: Assume Σ $ugs ϕ follows by SP1, and so Σ “ t$Au
and ϕ “ A�| K. We know by L7.8 that negpAq P pfspL´q, and so
$ negpAq $ugsn negpAq�| K since SP1 belongs to UGSN. It follows that
negp$Aq $ugsn negpA�| Kq, since by definition both negp$Aq “ $ negpAq
and negpA�| Kq “ negpAq�| K. Thus negpΣq $ugsn negpϕq. I will omit
consideration of SP2 – SP5, all of which are similar to SP1.

Case NA1: Assume Σ $ugs ϕ follows by NA1, and so Σ “ ∅ and
ϕ “ A �   A for some A P pfs pLq. By L7.8, negpAq P pfspL´q,
and so $ugsn negpAq � negpAq follows by E1. However, we also know
that negpA �   Aq “ negpAq � negpAq, and so $ugsn negpA �   Aq.
Thus negpΣq $ugsn negpϕq as desired. I will omit consideration of NA2
– NA6 which are similar.

Since negpΣq $ugsn negpϕq holds in each of the cases above, we
may conclude that if Σ $0

ugs ϕ, then negpΣq $ugsn negpϕq. Assume for
induction that for all k ă n, if Σ $kugs ϕ, then negpΣq $ugsn negpϕq.
Assume for discharge that Σ $nugs ϕ. Thus Σ $nugs ϕ follows from one of
the metarules included in UG. Consider the following cases.

Case SP6: Assume Σ $nugs ϕ follows by SP6. Thus ϕ “ A � B
where Σ $kugs $pi Ñ rppi � Aq Ñ ppi � Bqs for some k ă n and pi P L
which does not occur in A,B, or in any σ P Σ. We may then conclude
by hypothesis that negpΣq $ugsn negp$pi Ñ rppi �Aq Ñ ppi �Bqsq, and
so negpΣq $ugsn $p2i Ñ prp2i � negpAqs Ñ rp2i � negpBqsq. Given that
pi does not occur in A,B, or in any σ P Σ, we may observe that p2i does
not occur in negpAq, negpBq, or in negpσq for any σ P Σ. It follows that
negpΣq $ugsn negpAq�negpBq by SP6, and so negpΣq $ugsn negpA�Bq.
Thus we may then conclude that negpΣq $ugsn negpϕq as desired. I will
omit consideration of SP7 which is similar.

Given the cases above, it follows by induction that if Σ $ugs ϕ, then
negpΣq $ugsn negpϕq. In order to prove the converse, assume instead
that negpΣq $ugsn negpϕq. It follows that negpΣq $ugs negpϕq since
UG extends UGSN. By R2˘, genpnegpΣqq $ugs genpnegpϕqq, and so
Σ $ugs ϕ by L7.11. Together with the above, we may conclude that
Σ $ugs ϕ just in case negpΣq $ugsn negpϕq for all ΣYtϕu Ď wfs pLq.

We are now in a position to introduce the function N : C8 Ñ C˘, showing
every M P C8 is such that M ( negpϕq just in case MN ( ϕ. Consider:

N-Model: Given any M P C8 where M “ xS,
Ů

, | ¨ |y, let | ¨ |N “ x| ¨ |N
`

, | ¨ |N
´

y

where |pi|
N`

“ |p2i| and |pi|
N´

“ |p2i`1| for all pi P L.
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N-Map: Given any M P C8 where M “ xS,
Ů

, | ¨ |y, let MN “ xS,
Ů

, | ¨ |Ny.

We may then prove the following lemmas.

L7.12 MN P C˘ for all M P C8.

Proof. Let M P C8. It follows that M “ xS,
Ů

, | ¨ |y for some S P M8

where S “ xS,
Ů

y. By definition, |p| P P8S for all p P L. Choose some
pi P L. It follows that both |p2i|, |p2i`1| P P8S , and so x|p2i|, |p2i`1|y P P˘S .

Thus |pi|
N P P8S since |pi|

N “ x|pi|
N`

, |pi|
N´

y where |pi|
N`

“ |p2i| and

|pi|
N´

“ |p2i`1|. Since pi P L was arbitrary, we may conclude that
MN P C˘ where MN “ xS,

Ů

, | ¨ |Ny.

L7.13 | negpAq| “ |A|N
`

for all A P pfs pLq and M P C8.

Proof. The proof goes by induction on complexity. Assume to start that
A P pfs pLq where comppAq ă 2. Thus either: (1) A “ T ; (2) A “  T ;
(3) A “ K; (4) A “  K; (5) A “ pi; or (6) A “  pi. Consider:

Case 1: Let A “ T , and so negpAq “ T . Thus | negpAq| “ |T |. Since |V|N`

“ |T |,
we know that | negpAq| “ |A|N

`

.

Case 2: Let A “  T , and so negpAq “ V. Thus it follows that | negpAq| “ |V|.
By L7.12 and L7.1, | T |N`

“ |T |N´

, where |T |N´

“ |V|, and so

| negpAq| “ |A|N
`

.

Case 3: Let A “ K, and so negpAq “ K. Thus | negpAq| “ |K|. Since |K|N
`

“ |K|,

we know that | negpAq| “ |A|N
`

.

Case 4: Let A “  K, and so negpAq “

J́

. Thus it follows that | negpAq| “ |

J́

|.

By L7.12 and L7.1, | K|N
`

“ |K|N
´

, where |K|N
´

“ |

J́

|, and so

| negpAq| “ |A|N
`

.

Case 5: Let A “ pi for some pi P L. It follows that negpAq “ p2i, and so

| negpAq| “ |p2i|. We also know that |pi|
N`

“ |p2i|, and so |A|N
`

“ |p2i|.

Thus | negpAq| “ |A|N
`

.

Case 6: Let A “  pi for some pi P L. Thus negpAq “ p2i`1, and so it follows

that | negpAq| “ |p2i`1|. By L7.12 and L7.1, | pi|
N`

“ |pi|
N´

, where

|pi|
N´

“ |p2i`1|. Thus | negpAq| “ |A|N
`

.

Given the cases above, | negpAq| “ |A|N
`

for all A P pfs pLq where

comppAq ă 2. Assume for induction that | negpAq| “ |A|N
`

for all
A P pfs pLq such that comppAq ă n. Let A P pfs pLq be such that
comppAq “ n. Thus it follows that either: paq A “   B; pbq A “ B^C;
pcq A “ B _ C; pdq A “  pB _ Cq; or peq A “  pB ^ Cq.

Case paq: Assume A “   B. Thus negpAq “ negpBq, where we

know that | negpBq| “ |B|N
`

by hypothesis. By L7.12 and L7.1, it

follows that |B|N
`

“ | B|N
´

“ |  B|N
`

. Thus | negpAq| “ |A|N
`

.
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Case pbq: Assume A “ B ^ C. Thus negpAq “ negpBq ^ negpCq,

where both | negpBq| “ |B|N
`

and | negpCq| “ |C|N
`

by hypothesis. By

L7.12 and L7.2, |B ^ C|N
`

“ |B|N
`

^ |C|N
`

. It follows that:

| negpAq| “ | negpBq ^ negpCq|

p˚q “ | negpBq| ^ | negpCq|

“ |B|N
`

^ |C|N
`

“ |B ^ C|N
`

“ |A|N
`

.

Here p˚q follows by an argument identical to r`^s given in L7.2, where

the other identities follow from the above. Thus | negpAq| “ |A|N
`

.
Case pcq: Assume A “ B _ C. Thus negpAq “ negpBq _ negpCq,

where both | negpBq| “ |B|N
`

and | negpCq| “ |C|N
`

by hypothesis. By

L7.12 and L7.3, |B _ C|N
`

“ |B|N
`

_ |C|N
`

. It follows that:

| negpAq| “ | negpBq _ negpCq|

p˚q “ | negpBq| _ | negpCq|

“ |B|N
`

_ |C|N
`

“ |B _ C|N
`

“ |A|N
`

.

Here p˚q follows by an argument identical to r`_s given in L7.3, where

the other identities follow from the above. Thus | negpAq| “ |A|N
`

.
Case pdq: Assume A “  pB_Cq, so negpAq “ negp Bq^negp Cq.

By hypothesis, both | negp Bq| “ | B|N
`

and | negp Cq| “ | C|N
`

.

By L7.12 and L7.1, | B|N
`

“ |B|N
´

and | C|N
`

“ |C|N
´

, as well as

| pB _ Cq|N
`

“ |B _ C|N
´

, where |B _ C|N
´

“ |B|N
´

^ |C|N
´

follows
by L7.3. We may then argue as follows:

| negpAq| “ | negp Bq ^ negp Cq|

p˚q “ | negp Bq| ^ | negp Cq|

“ | B|N
`

^ | C|N
`

“ |B|N
´

^ |C|N
´

“ |B _ C|N
´

“ | pB _ Cq|N
`

“ |A|N
`

.

Here p˚q follows by an argument identical to r`^s given in L7.2, where

the other identities follow from the above. Thus | negpAq| “ |A|N
`

.
Case peq: Assume A “  pB^Cq, so negpAq “ negp Bq_ negp Cq.

By hypothesis, | negp Bq| “ | B|N
`

and | negp Cq| “ | C|N
`

. By

L7.12 and L7.1, we know that | B|N
`

“ |B|N
´

and | C|N
`

“ |C|N
´

,

as well as | pB^Cq|N
`

“ |B^C|N
´

, where |B^C|N
´

“ |B|N
´

_|C|N
´
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follows by L7.2. We may then argue as follows:

| negpAq| “ | negp Bq _ negp Cq|

p˚q “ | negp Bq| _ | negp Cq|

“ | B|N
`

_ | C|N
`

“ |B|N
´

_ |C|N
´

“ |B ^ C|N
´

“ | pB ^ Cq|N
`

“ |A|N
`

.

Here p˚q follows by an argument identical to r`_s given in L7.3, where

the other identities follow from the above. Thus | negpAq| “ |A|N
`

.

Given that | negpAq| “ |A|N
`

in each of the cases above, we may

conclude by induction that | negpAq| “ |A|N
`

for all A P pfs pLq.

P7.3 M ( negpϕq iff MN ( ϕ for all M P C8 and ϕ P wfs pLq.

Proof. Let M P C8 and ϕ P wfs pLq. The proof goes by induction on
complexity. Assume comp`pϕq “ 0. It follows that either ϕ “ A�B for
some A,B P pfs pLq, or ϕ “ $A for some A P pfs pLq.

Case I: Assume ϕ “ A�B for some A,B P pfs pLq. It follows that
negpϕq “ negpAq� negpBq. We may then reason as follows:

M ( negpϕq iff M ( negpAq� negpBq

iff | negpAq| Ď | negpBq|

p˚q iff |A|N` Ď |B|N`

iff MN ( A�B

iff MN ( ϕ.

The biconditionals above all follow by definition or assumption with the
exception of p˚q which is given by L7.13. Thus we may conclude that
M ( negpϕq just in case MN ( ϕ as desired.

Case II: Assume ϕ “ $A for some A P pfs pLq. It follows that
negpϕq “ $ negpAq. We may then reason as follows:

M ( negpϕq iff M ( $ negpAq

iff | negpAq| “ tsu for some s P S

p˚q iff |A|N` “ tsu for some s P S

iff MN ( $A

iff MN ( ϕ.

As before, the biconditionals above all follow by definition or assumption
with the exception of p˚q which is given by L7.13. Thus we may conclude
that M ( negpϕq just in case MN ( ϕ.

Given the cases above, it follows by a routine induction proof that
M ( negpϕq just in case MN ( ϕ for any ϕ P wfs pLq.
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P7.4 N : C8 Ñ C˘ is a surjection.

Proof. Choose some Mu P C˘S . It follows that Mu “ xS,
Ů

, | ¨ |uy, where
|pi|u “ x|pi|

`
u , |pi|

´
u y for all pi P L. We may then define | ¨ | as follows:

|pi| “

#

|p i
2
|`u if i is even

|p i´1
2
|´ otherwise.

Since Mu P C˘, we know that x|pi|
`
u , |pi|

´
u y P P˘S , and so |pi|

`
u , |pi|

´
u P P8S .

Thus |p2i|, |p2i`1| P P8S for all i P N, and so |pi| P P8S for all pi P L. By
definition, M “ xS,

Ů

, | ¨ |y P C8. We may then consider the following:

|pi|
N “ x|pi|

N`

, |pi|
N´

y

“ x|p2i|, |p2i`1|y

“ x|pi|
`
u , |pi|

´
u y

“ |pi|u.

The identities above all hold by definition or assumption. It follows that
MN “ Mu, and so there is some M P C8 where MN “ Mu for any
Mu P C˘. Thus we may conclude that N is surjective.

8 Bilattice Theory

Having extended Soundness and Completeness to UGS, we may now employ
the resources above to define bilateral analogues of ∝ and Ď along with a unary
inversion operator over the space of propositions P˘S , showing that the resulting
structure forms a bilattice. To begin with, consider the following orders:

Bilateral Containment: xX,Y y Ť xU, V y iff X ∝ U and Y Ď V .

Bilateral Entailment: xX,Y y Ť xU, V y iff X Ď U and Y ∝ V .

In order to prove that both xP˘S ,Ťy and xP˘S ,Ťy are complete lattices, we may
show that for any S PM8 and indexed family of propositions tPi : i P Iu Ď P˘S ,
Ź

tPi : i P Iu is the least upper bound with respect to Ť, and
Ž

tPi : i P Iu is
the least upper bound with respect to Ť as follows:

L8.1
Ź

tPi : i P Iu “ lubŤtPi : i P Iu.

L8.2
Ž

tPi : i P Iu “ lubŤtPi : i P Iu.

Since both xP˘S ,Ťy and xP˘S ,Ťy are complete lattices, it follows that xP˘S ,Ť,Ťy
is a pre-bilattice. Accordingly, B˘S “ xP

˘
S ,Ť,Ť, y is a bilattice on account of

the fact that xP˘S ,Ť,Ťy is a pre-bilattice where ‘ ’ is a unary operator on P˘S
which obeys the following conditions for all P,Q P P˘S :

L8.3   P “ P .
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L8.4 If P Ť Q, then  P Ť  Q.

L8.5 If P Ť Q, then  P Ť  Q.

It remains to further characterise the properties which B˘S exhibits, marking
important points of departure from Boolean theories in which the space of
propositions forms a complemented distributive lattice.18

Given any S P C˘, we may begin by showing that B˘S is bounded below by
proving that the following identities hold for any P P P˘S :

L8.6 P _K “ P . L8.7 P ^

J́

“ P .

Observe that
Ž

∅ “ K and
Ź

∅ “

J́

, and so
Ž

∅ and
Ź

∅ provide lower
bounds for P˘S with respect to Ť and Ť. By contrast,

Ž

P˘S “ xS,∅y ‰ T and
Ź

P˘S “ x∅, Sy ‰ V given that K,

J́

P P8S . Rather we find that
Ž

P˘S “ T _

J́

and
Ź

P˘S “ K^ V. Letting J “ T _

J́

and J́ “ K ^ V, it follows that:

L8.8 P _J “ J. L8.9 P ^ J́ “ J́.

It follows that B˘S is bounded above by J and J́ with respect to Ť and Ť

rather than T and V.19 Nevertheless, J and J́ may be defined in terms of
T ,K,V, and

J́

, whereas the same cannot be said in reverse.20

We may now turn to observe that both ^ and _ are monotonic over their
respective orders. More specifically, for any P,Q,R P P˘S :

L8.13 If P Ť Q, then P ^R Ť Q^R.

L8.14 If P Ť Q, then P _R Ť Q_R.

By contrast with the above, ^ and _ are not monotonic over each other’s
orders given that there are some P,Q,R P P˘S for which:

L8.15 P Ť Q and P _R Ű Q_R.

L8.16 P Ť Q and P ^R Ű Q^R.

It follows that B˘S is not interlaced which requires ^ and _ to be monotonic
over both orders Ť and Ť.21 We may also show that both absorption laws fail,
where B˘S is distributive only in negation since conjunction does not distribute
over disjunction, nor does disjunction distribute over conjunction:

18 Ginsberg (1988) first proposed the definition of a bilattice. Alternatively, one could drop
the requirement that pre-bilattices consist of lattices which are complete as in Rivieccio
(2010). See also Mobasher et al. (2000) for discussion of such discrepancies in usage.
19 See §7 of Chapter 4 and Conclusion for related discussion.
20 However, by letting Pp˘qS “ txV, F y : V, F P P8S {∅u, we may show that both

Ź

pPp˘qS q “ V
and

Ž

pPp˘qS q “ T . See Fine (2017b, p. 642) for related discussion.
21 Restricting P8S to convex propositions makes the resulting pre-bilattice interlaced.
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L8.17 P ^ pP _Qq ‰ P for some S PM8 and P,Q,R P PS .

L8.18 P _ pP ^Qq ‰ P for some S PM8 and P,Q,R P PS .

L8.19  pP ^Qq “  P _ Q for all S PM8 and P,Q P PS .

L8.20  pP _Qq “  P ^ Q for all S PM8 and P,Q P PS .

L8.21 P _ pQ^Rq ‰ pP _Qq ^ pP _Rq for some S PM8 and P,Q,R P PS .

L8.22 P ^ pQ_Rq ‰ pP ^Qq _ pP ^Rq for some S PM8 and P,Q,R P PS .

The symmetry in distribution laws for conjunction over disjunction and vice
versa may be contrasted with the asymmetry between L3.21 and L3.22.
Having offered a preliminary survey of the structure of P˘S , I will turn to relate
these results to the theorems of UGS in the following section.

L8.1
Ź

tPi : i P Iu “ lubŤtPi : i P Iu for all S PM8 and tPi : i P Iu Ď P˘S .

Proof. Let S PM8 and tPi : i P Iu Ď P˘S , where Pi “ xP
`
i , P

´
i y for all

i P I. By definition,
Ź

tPi : i P Iu “ x
Ź

tP`i : i P Iu,
Ž

tP´i : i P Iuy.
Since P˘i P P8S for all i P I, both

Ź

tP`i : i P Iu “ lub�tP`i : i P Iu
and

Ž

tP´i : i P Iu “ lubĎtP´i : i P Iu follow from L6.6 and L6.7,
respectively. Thus P`i �

Ź

tP`i : i P Iu and P´i Ď
Ž

tP´i : i P Iu for all
i P I, and so Pi Ť

Ź

tPi : i P Iu for all i P I. It follows that
Ź

tPi : i P Iu
is an upper bound of tPi : i P Iu with respect to Ť.

Let Z P P˘S , and assume that Pi Ť Z for all i P I. Thus Z “ xZ`, Z´y
and Pi “ xP

`
i , P

´
i y for each i P I, where Z˘, P˘i P P8S . Again by L6.6

and L6.7, we know that
Ź

tP`i : i P Iu� Z` and
Ž

tP´i : i P Iu Ď Z´,
and so

Ź

tPi : i P Iu Ť Z. Since Z was arbitrary, we may conclude from
the above that

Ź

tPi : i P Iu “ lubŤtPi : i P Iu.

L8.2
Ž

tPi : i P Iu “ lubŤtPi : i P Iu for all S PM8 and tPi : i P Iu Ď P˘S .

Proof. Similar to L8.1.

L8.3   P “ P for all S PM8 and P P P˘S .

Proof. Let S PM8 and P P P˘S . It follows that P “ xP`, P´y for some
P˘ P P8S . By definition,  xP`, P´y “ xP´, P`y, and so it follows that
  xP`, P´y “ xP`, P´y. Equivalently,   P “ P .

L8.4 For all S PM8 and P,Q P P˘S , if P Ť Q, then  P Ť  Q.

Proof. Let S P M8 and P P P˘S , and assume P Ť Q. Thus it follows
that P “ xP`, P´y and Q “ xQ`, Q´y for some P˘, Q˘ P P8S , where
both P` Ď Q` and P´ � Q´. Thus xP´, P`y Ť xQ´, Q`y, and so
 xP`, P´y Ť  xQ`, Q´y. Equivalently,  P Ť  Q as desired.

L8.5 For all S PM8 and P P P˘S , if P Ť Q, then  P Ť  Q.

Proof. Similar to L8.4.
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L8.6 P _K “ P for all S PM8 and P P P˘S .

Proof. Let S PM8 and P P P˘S . It follows that P “ xP`, P´y for some
P˘ P P8S . Since both P´ _∅ “ P´ and P` ^ t˝u “ P`, it follows that
xP` ^ t˝u, P´ _∅y “ xP`, P´y, and so P ^K “ P by definition.

L8.7 P ^

J́

“ P for all S PM8 and P P P˘S .

Proof. Similar to L8.6.

L8.8 P _J “ J for all S PM8 and P P P˘S .

Proof. Let S PM8 and P P P˘S . It follows that P “ xP`, P´y for some
P˘ P P8S , and so P` _ S “ S by L6.12, and P´ ^ ∅ “ ∅ by L6.13.
Thus xP` _ S, P´ ^∅y “ xS,∅y, and so P _J “ J as desired.

L8.9 P ^ J́ “ J́ for all S PM8 and P P P˘S .

Proof. Similar to L8.8.

L8.10 S3 PM8 where S3 “ xPpta, b, cuq,
Ť

y.

Proof. Let S3 “ xPpta, b, cuq,
Ť

y. Since
Ť

satisfies Associativity where
Ť

txu “ x for all x P Ppta, b, cuq, we know that S3 PM8.

L8.11 For any S PM8 and X,Y, Z P P8S , if X � Y , then X ^ Z � Y ^ Z.

Proof. Let S P M8 and X,Y, Z P P8S , and assume X � Y . It follows
that X " Y and X ! Y . Letting s P Y ^ Z, we know that s “

Ů

tx, yu
for some x P Y and y P Z, and so there is some z P X where z Ď x. Thus
Ů

tz, yu P Y ^ Z where
Ů

tz, xu “ x. We may then reason as follows:

ğ

t
ğ

tz, yu, su “
ğ

t
ğ

tz, yu,
ğ

tx, yuu

“
ğ ď

ttz, yu, tx, yuu

“
ğ ď

ttz, xu, tyuu

“
ğ

t
ğ

tz, xu,
ğ

tyuu

“
ğ

tx, yu

“ s.

The identities stated above follow by Collapse and Associativity given our
assumptions. Thus

Ů

t
Ů

tz, yu, su “ s, and so
Ů

tz, yu Ď s. Generalising
on s, we may conclude that that X ^ Z " Y ^ Z.

Choose instead some u P X^Z and v P Y ^Z. Thus u “
Ů

tx, zu and
v “

Ů

ty, wu for some x P X, y P Y , and z, w P Z. Since X ! Y , we know
that

Ů

tx, yu P Y , where
Ů

tz, wu P Z given that Z P PS . Accordingly,
Ů

t
Ů

tx, yu,
Ů

tz, wuu P Y ^ Z, and so
Ů

t
Ů

tx, zu,
Ů

ty, wuu P Y ^ Z, so
Ů

tu, vu P Y ^ Z. Thus X ^ Z ! Y ^ Z, and so X ^ Z � Y ^ Z.

L8.12 For any S PM8 and X,Y, Z P P8S , if X Ď Y , then X _ Z Ď Y _ Z.
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Proof. Let S P M8 and X,Y, Z P P8S , and assume X � Y . Choose
s P X_R`. By L6.8, s P XYZYpX^Zq. If s P XYZ, then s P Y YZ,
and so s P Y Y Z Y pY ^ Zq. If s P X ^ Z, then s “

Ů

tx, yu for some
x P X and y P Z, and so s P Y ^Z since x P Y . Thus s P Y YZYpY ^Zq,
and so s P Y _ Z by L6.8. It follows that X _ Z Ď Y _ Z.

L8.13 For any S PM8 and P,Q,R P P˘S , if P Ť Q, then P ^R Ť Q^R.

Proof. Let S PM8 and P,Q,R P P˘S , and assume P Ť Q for discharge.
Thus P` �Q` and P´ Ď Q´, where P˘, Q˘, R˘ P P8S . It follows that
P` ^ R` � Q` ^ R` by L8.11, and P´ _ R´ Ď Q´ _ R´ by L8.12.
Accordingly, xP` ^ R`, P´ _ R´y Ť xQ` ^ R`, Q´ _ R´y, and so by
definition we may conclude that P ^R Ť Q^R.

L8.14 For any S PM8 and P,Q,R P P˘S , if P Ť Q, then P _R Ť Q_R.

Proof. Similar to L8.13.

L8.15 P Ť Q and P _R Ű Q_R for some S PM8 and P,Q,R P P˘S .

Proof. Let S3 “ xS,Yy where S “ Ppta, b, cuq. By L3.12, we know that
S3 PM8. Let P “ xttauu, ttauuy, Q “ xttau, tbu, ta, buu, ttau, tbu, ta, buuy,
and R “ xttcuu, ttcuuy, and observe that P,Q,R P P˘S3

. For the sake of
readability, let α “ tau, β “ tbu, and γ “ tcu, where ‘x.y’ abbreviates
‘
Ť

tx, yu’. We may then observe the following:

P “ xtαu, tαuy

Q “ xtα.βu, tα.βuy

R “ xtγu, tγuy
P _R “ xtα, γ, α.γu, tα.γuy

Q_R “ xtβ, α.β, α.β.γu, tα.β.γuy.

Given that γ P P _ R and β P Q _ R, but γ.β R Q _ R, we may
conclude that P_R Ű Q_R. However, P Ť Q, concluding the proof.

L8.16 P Ť Q and P ^R Ű Q^R for some S PM8 and P,Q,R P P˘S .

Proof. Similar to L8.15.

L8.17 P ‰ P ^ pP _Qq for some S PM8 and P,Q,R P PS .

Proof. Let S3 “ xS,Yy where S “ Ppta, b, cuq. By L3.12, we know that
S3 PM8. Let P “ xttauu, ttauuy and Q “ xttbuu, ttbuuy, observing that
P,Q P P˘S3

. For ease of exposition, let α “ tau and β “ tbu, where ‘x.y’
abbreviates ‘

Ť

tx, yu’. Thus it follows that:

P _Q “ xtα, β, α.βu, tα.βuy

P ^ pP _Qq “ xtα, α.βu, tα, α.βuy.

We may conclude the proof by observing that P ‰ P ^ pP _Qq.

L8.18 P ‰ P _ pP ^Qq for some S PM8 and P,Q,R P PS .

Proof. Similar to L8.17.

L8.19  pP ^Qq “  P _ Q for all S PM8 and P,Q P P˘S .
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Proof. Let S P M8 and P,Q P P˘S . It follows that P “ xP`, P´y and
Q “ xQ`, Q´y for some P˘, Q˘ P P8S . We may then argue as follows:

 pP ^Qq “  pxP`, P´y ^ xQ`, Q´yq

“  pxP` ^Q`, P´ _Q´yq

“ xP´ _Q´, P` ^Q`y

“ xP´, P`y _ xQ´, Q`y

“  P _ Q.

The identities above all follow by definition or assumption.

L8.20  pP _Qq “  P ^ Q for all S PM8 and P,Q P P˘S .

Proof. Similar to L8.19.

L8.21 P _ pQ^Rq ‰ pP _Qq ^ pP _Rq for some S PM8 and P,Q,R P P˘S .

Proof. Let P “ xttauu, ttbuuy, Q “ xttbuu, ttcuuy, andR “ xttcuu, ttauuy.
For ease of exposition, let α “ tau, β “ tbu, and γ “ tcu, where ‘x.y’
abbreviates ‘

Ť

tx, yu’. We may then observe the following:
P “ xtαu, tβuy

Q “ xtβu, tγuy

R “ xtγu, tαuy

Q^R “ xtα.γu, tα, β, α.βuy

P _Q “ xtα, β, α.βu, tβ.γuy

P _R “ xtα, γ, α.γu, tα.γuy.
P _ pQ^Rq “ xtα, α.γu, tβ, α.βuy

pP _Qq ^ pP _Rq “ xtα, α.β, α.γ, α.β.γu, tα.γ, β.γ, α.β.γuy.

By inspection, we may conclude that P _ pQ^Rq ‰ pP _Qq ^ pP _Rq,
observing that P,Q,R P P˘S3 and s3 PM8 by L8.10.

L8.22 P ^ pQ_Rq ‰ pP ^Qq _ pP ^Rq for some S PM8 and P,Q,R P P˘S .

Proof. Let P “ xttauu, ttbuuy, Q “ xttbuu, ttcuuy, andR “ xttcuu, ttauuy.
For ease of exposition, let α “ tau, β “ tbu, and γ “ tcu, where ‘x.y’
abbreviates ‘

Ť

tx, yu’. Given the identities in L8.21, it follows that:

P ^Q “ xtβ.γu, tα, β, α.βuy

P ^R “ xtα.γu, tα, γ, α.γuy

P ^ pQ_Rq “ xtα.γu, tα, β, α.βuy

pP ^Qq _ pP ^Rq “ xtα.β, α.γ, α.β.γu, tβ, α.β, α.γ, β.γ, α.β.γuy.

By inspection, we may conclude that P ^ pQ_Rq ‰ pP ^Qq _ pP ^Rq,
observing that P,Q,R P P˘S3 and s3 PM8 by L8.10.

9 The Logic of Essence and Ground

In order to make the connections between the propositional bilattice and UGS
more perspicuous, it will help to introduce a number of further abbreviations,
defining essence and ground in terms of unilateral ground as in §1.

Unilateral Essence: Let xA�By abbreviate xA^B « By.
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Ground: Let xA ď By abbreviate xpA�Bq ^ p A� Bqy.

Essence: Let xA Ď By abbreviate xpA�Bq ^ p A� Bqy.

Reduction: Let xAñ By abbreviate xpA ď Bq ^ pA Ď Bqy.

Identity: Let xA ” By abbreviate xpAñ Bq ^ pB ñ Aqy.

Whereas unilateral ground only describes the relationship between the exact
verifiers for the antecedent and consequent, essence and ground constrain both
the exact verifiers and falsifiers for the propositions involved.

The following results will help to bring out the manner in which the
operators defined above are able to describe the propositional bilattice B˘S
characterised above for any given S PM8. In particular, I will show that the
following hold for any M P C˘ and A,B P pfs pLq:

L9.1 M ( A�B iff |A|` � |B|`.

L9.2 M ( A ď B iff |A| Ť |B|.

L9.3 M ( A Ď B iff |A| Ť |B|.

L9.4 M ( Añ B iff |A| Ť |B| and |A| Ť |B|.

L9.5 M ( A ” B iff |A| “ |B|.

Given these connections, we may show that each of the following Boolean
identities admit of countermodels in the present setting:

L9.6 *C˘ A ” A^ pA_Bq.

L9.7 *C˘ A ” A_ pA^Bq.

L9.8 *C˘ A_ pB ^ Cq ” pA_Bq ^ pA_ Cq.

L9.9 *C˘ A^ pB _ Cq ” pA^Bq _ pA^ Cq.

These results help to distinguish UGS from extensional and intensional logics
which describe spaces of propositions which form complemented distributive
lattices. Additionally, we may show that analogues of the identities above hold
when identity has been replaced with reduction, highlighting the distinctive
role which reduction has to play in the present theory.

Rather than continuing to work over UGS, it will help to further exhibit
the relationships between essence and ground and the extensional operators by
considering the following range of theorems and admissible rules within UGS:

T1 K ď A.

T3

J́

Ď A.

T5 A ď A_B.

T7 A Ď A^B.

T9 A^B ď A_B.

T11 Añ A^ pA_Bq.

T13 Añ A_ pA^Bq.
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T2 A ď J.

T4 A Ď J́.

T6 B ď A_B.

T8 B Ď A^B.

T10 A_B Ď A^B.

T12 A^ pB _ Cq ñ pA^Bq _ pA^ Cq.

T14 A_ pB ^ Cq ñ pA_Bq ^ pA_ Cq.

R1 A ď B $ B Ď A_B.

R3 A Ď B $ B ď A^B.

R5 A ď C, B ď C $ A_B ď C.

R7 A Ď C, B Ď C $ A^B Ď C.

R9 A ď B, B ď C $ A ď C.

R11 A Ď B, B Ď C $ A Ď C.

R2 A ď B $ A_B Ď B.

R4 A Ď B $ A^B ď B.

R6 A ď B, A ď C $ A ď B ^ C.

R8 A Ď B, A Ď C $ A Ď B _ C.

R10 A Ď B, C Ď D $ A^ C Ď B ^D.

R12 A ď B, C ď D $ A_ C ď B _D.

Let the syntactic consequent relation $eg for The Logic of Essence and Ground
(EG) be the smallest relation closed under truth-functional consequence which
satisfies the above. In contrast to UGS, the subsystem EG aims to capture a
natural means of reasoning about essence and ground.

Rather than deriving each of the axioms and rules for EG within UGS, I
will provide derivations of T11 – T14 as characteristic examples:

L9.10 $ugs Añ A^ pA_Bq.

L9.11 $ugs Añ A_ pA^Bq.

L9.19 $ugs A^ pB _ Cq ñ pA^Bq _ pA^ Cq.

L9.20 $ugs A_ pB ^ Cq ñ pA_Bq ^ pA_ Cq.

In order to further characterise the granularity of the present theory of bilateral
propositions, we may also derive the following with UGS, where I will establish
the theoremhood of ID9 and ID11 by way of T4 for convenience:

ID1 A_K ” A.

ID3 A_J ” J.

ID5 A ” A^A

ID7 A^B ” B ^A

ID9  pA^Bq ” p A_ Bq

ID11  pA_Bq ” p A^ Bq

ID13 A ”   A

ID2 A^

J́

” A.
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ID4 A^ J́ ” J́.

ID6 A ” A_A

ID8 A_B ” B _A

ID9 pA^Bq ^ C ” A^ pB ^ Cq

ID11 pA_Bq _ C ” A_ pB _ Cq

IDR1 A ” B $ B ” A

IDR2 A ” B $ pA^ Cq ” pB ^ Cq

IDR4 A ” B, B ” C $ A ” C

IDR3 A ” B $ pA_ Cq ” pB _ Cq

IDR5 A ” B $  A ”  B

Given the results above, we may let the syntactic consequent relation $lpi

for The Logic of Propositional Identity (LPI) be the smallest relation closed
under truth-functional consequence which satisfies the above. In contrast EG
which streamlines reasoning about essence and ground, LPI aims to capture a
natural means of reasoning about propositional identity in the present setting.
These results help to further characterise the structure of the present theory
of bilateral propositions in contrast to the traditional Boolean theories of
propositions developed in extensional and intensional logics.

Despite having proven that UGS is sound and complete over C˘, it remains
to show whether the subsystems EG and LPI also admit of completeness results.
In particular, one might aim to show that UGS is a conservative extension of
both EG as LPI. Leaving these further pursuits for another day, I will conclude
by presenting proofs of a selection of the claims asserted above.

L9.1 For all M P C˘ and A,B P pfs pLq, M ( A�B iff |A|` � |B|`.

Proof. Let M P C˘ and A,B P pfs pLq. We may the argue as follows:

M ( A�B iff M ( B « A^B

iff |B|` “ |A^B|`

p:q iff |B|` “ |A|` ^ |B|`

p;q iff |A|` � |B|`.

The biconditionals above hold by definition with the exception of p:q
which is given by L7.2, and p;q which requires further argument.

Assume |B|` “ |A|` ^ |B|`, and let s P |B|`. Thus s P |A|` ^ |B|`,
and so s “

Ů

tx, yu for some x P |A|` and y P |B|`. It follows that x Ď s,
and so |A|` " |B|` since s was arbitrary. Assuming that x P |A|` and
y P |B|`, it follows that

Ů

tx, yu P |A|` ^ |B|`, and so
Ů

tx, yu P |B|`

by assumption. Thus |A|` ! |B|`, and so |A|` � |B|`.
Assume instead that |A|`�|B|`. Thus |A|` " |B|` and |A|` ! |B|`.

Letting s P |B|`, it follows that there is some y P |A|` where y Ď s, and so
Ů

ty, su “ s. By definition,
Ů

ty, su P |A|`^|B|`, and so s P |A|`^|B|`.
Thus |B|` Ď |A|`^|B|`. Assume instead that t P |A|`^|B|`. It follows
that t “

Ů

tx, yu for some x P |A|` and y P |B|`. Since |A|` ! |B|`,
it follows that t P |B|`, and so |A|` ^ |B|` Ď |B|`. Given the above,
|B|` “ |A|` ^ |B|`, thereby establishing p;q.

L9.2 For all M P C˘ and A,B P pfs pLq, M ( A ď B iff |A| Ť |B|.
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Proof. Let M P C˘ and A,B P pfs pLq. We may the argue as follows:

M ( A ď B iff M ( pA�Bq ^ p A� Bq

iff M ( A�B and M (  A� B

p˚q iff |A|` Ď |B|` and | A|` � | B|`

iff |A|` Ď |B|` and |A|´ � |B|´

iff |A| Ť |B|.

All of the biconditionals above hold by definition with the exception of
p˚q which follows from the Bilateral Semantics together with L9.1.

L9.3 For all M P C˘ and A,B P pfs pLq, M ( A Ď B iff |A| Ť |B|.

Proof. Let M P C˘ and A,B P pfs pLq. We may the argue as follows:

M ( A Ď B iff M ( pA�Bq ^ p A� Bq

iff M ( A�B and M (  A� B

p˚q iff |A|` � |B|` and | A|` Ď | B|`

iff |A|` � |B|` and |A|´ Ď |B|´

iff |A| Ť |B|.

All of the biconditionals above hold by definition with the exception of
p˚q which follows from the Bilateral Semantics together with L9.1.

L9.4 For all M P C˘ and A,B P pfs pLq, M ( Añ B iff |A| Ť |B| and |A| Ť |B|.

Proof. Let M P C˘ and A,B P pfs pLq. We may the argue as follows:

M ( Añ B iff M ( pA ď Bq ^ pA Ď Bq

iff M ( A ď B and M ( A Ď B

p˚q iff |A| Ť |B| and |A| Ť |B|.

The biconditionals above follow by definition with the exception of p˚q
which is given by L9.2 and L9.3.

L9.5 For all M P C˘ and A,B P pfs pLq, M ( A ” B iff |A| “ |B|.

Proof. Let M P C˘ and A,B P pfs pLq. We may the argue as follows:

M ( A ” B iff M ( pAñ Bq ^ pB ñ Aq

iff M ( Añ B and M ( B ñ A

p:q iff |A| Ť |B|, |A| Ť |B|, |B| Ť |A|, and |B| Ť |A|

p;q iff |A| “ |B|.

The biconditionals above all follow by definition with the exception of
p:q which is given by L9.4, and p;q which requires further support.

Assume that: (1) |A| Ť |B|; (2) |A| Ť |B|; (3) |B| Ť |A|; and (4)
|B| Ť |A|. It follows that |A|` Ď |B|` and |B|` Ď |A|` from (1) and (3),
where similarly |A|´ Ď |B|´ and |B|´ Ď |A|´ follow from (2) and (4).
Thus we may conclude that |A| “ |B|.

Assume instead that |A| “ |B|. Thus |A|˘ “ |B|˘ and |B|˘ “ |A|˘,
and so |A|˘ Ď |B|˘ and |B|˘ Ď |A|˘. Since A,B P pfs pLq, both
|A|, |B| P P˘S by P7.1, and so |A|˘, |B|˘ P P8S . Thus |A|˘ � |B|˘ and
|B|˘ � |A|˘ follow by L9.14, and so (1) – (4) follow by definition.
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L9.6 *C˘ A ” A^ pA_Bq for some A,B P pfs pLq.

Proof. Recall that P ‰ P ^ pP _ Qq for some S P M8 and P,Q P P˘S
by L8.17. Let M P C˘S where |p1| “ P and |p2| “ Q. It follows that
|p1| ‰ |p1| ^ p|p1| _ |p2|q. Thus we may reason as follows:

|p1| ‰ |p1| ^ p|p1| _ |p2|q iff |p1| ‰ |p1| ^ |p1 _ p2|

iff |p1| ‰ |p1 ^ pp1 _ p2q|

p˚q iff M * p1 ” p1 ^ pp1 _ p2q.

The biconditionals above hold by definition with the exception of p˚q
which is given by L9.5. Thus M * p1 ” rp1 ^ pp2 _ p3qs.

L9.7 *C˘ A ” A_ pA^Bq for some A,B P pfs pLq.

Proof. Recall that P ‰ P _ pP ^ Qq for some S P M8 and P,Q P P˘S
by L8.18. Let M P C˘S where |p1| “ P and |p2| “ Q. It follows that
|p1| ‰ |p1| _ p|p1| ^ |p2|q. Thus we may reason as follows:

|p1| ‰ |p1| _ p|p1| ^ |p2|q iff |p1| ‰ |p1| _ |p1 ^ p2|

iff |p1| ‰ |p1 _ pp1 ^ p2q|

p˚q iff M * p1 ” p1 _ pp1 ^ p2q.

The biconditionals above hold by definition with the exception of p˚q
which is given by L9.5. Thus M * p1 ” rp1 _ pp2 ^ p3qs.

L9.8 *C˘ A_ pB ^ Cq ” pA_Bq ^ pA_ Cq for some A,B,C P pfs pLq.

Proof. Recall that P _ pQ^Rq ‰ pP _Qq ^ pP _Rq for some S PM8

and P,Q,R P P˘S by L8.21. Let M P C˘S where |p1| “ P , |p2| “ Q and
|p3| “ R. Thus |p1| _ p|p2| ^ |p3|q ‰ p|p1| _ |p2|q ^ p|p1| _ |p3|q, and so:

|p1| _ p|p2| ^ |p3|q ‰ p|p1| _ |p2|q ^ p|p1| _ |p3|q

iff |p1| _ |p2 ^ p3| ‰ |p1 _ p2| ^ |p1 _ p3|

iff |p1 _ pp2 ^ p3q| ‰ |pp1 _ p2q ^ pp1 _ p3q|

p˚q iff M * p1 _ pp2 ^ p3q ” pp1 _ p2q ^ pp1 _ p3q.

The biconditionals above hold by definition with the exception of p˚q which
is given by L9.5. Thus M * p1 _ pp2 ^ p3q ” pp1 _ p2q ^ pp1 _ p3q.

L9.9 *C˘ A^ pB _ Cq ” pA^Bq _ pA^ Cq for some A,B,C P pfs pLq.

Proof. Recall that P ^ pQ_Rq ‰ pP ^Qq _ pP ^Rq for some S PM8

and P,Q,R P P˘S by L8.22. Let M P C˘S where |p1| “ P , |p2| “ Q, and
|p3| “ R. It follows that |p1| ^ p|p2| _ |p3|q ‰ p|p1| ^ |p2|q _ p|p1| ^ |p3|q.
Thus we may reason as follows:

|p1| ^ p|p2| _ |p3|q ‰ p|p1| ^ |p2|q _ p|p1| ^ |p3|q

iff |p1| ^ |p2 _ p3| ‰ |p1 ^ p2| _ |p1 ^ p3|

iff |p1 ^ pp2 _ p3q| ‰ |pp1 ^ p2q _ pp1 ^ p3q|

p˚q iff M * p1 ^ pp2 _ p3q ” pp1 ^ p2q _ pp1 ^ p3q.

The biconditionals above hold by definition with the exception of p˚q which
is given by L9.5. Thus M * p1 ^ pp2 _ p3q ” pp1 ^ p2q _ pp1 _ p3q.
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L9.10 $ugs Añ A^ pA_Bq for all A,B P pfs pLq.

Proof. We know that $ugs A^rA_pA^Bqs� pA^Aq_ rA^pA^Bqs
by E13, where $ugs A^A�A_ pA^Bq follows from GA4 and GA1.
Additionally, $ugs A^pA^Bq�A_pA^Bq holds by GA5, GA4, GA8,
and GA2. Thus $ugs pA^Aq _ rA^ pA^Bqs�A_ pA^Bq follows by
AR1, and so $ugs A^rA_pA^Bqs�A_pA^Bq holds by GA9. Next
observe that $ugs A^ pA^Bq�A^ rA_ pA^Bqs follows from GA2,
E1, and GA8, and so $ugs A^B �A^ rA_ pA^Bqs holds by GA6,
GA3, E1, and GA8. Additionally, $ugs A�A^ rA_ pA^Bqs follows
from E1, GA1, GA8, GA3, and GA9, and so we may conclude that
$ugs A_pA^Bq�A^rA_pA^Bqs by AR1. Together with the above,
it follows that $ugs A_ pA^Bq « A^ rA_ pA^Bqs, and so by R2˘

$ugs  A_ p A^ Bq «  A^ r A_ p A^ Bqs. By NE12, NE13,
and AR4, it follows that $ugs  A_p A^ Bq «  A^ rA^pA_Bqs,
and so $ugs  A� rA^ pA_Bqs by definition.

Given that $ugs A�A^pA_Bq by T3, it follows from the above that
$ugs A ď A^ pA_Bq. Since we may show by a similar argument that
$ugs A Ď A^pA_Bq, we may conclude that $ugs Añ A^pA_Bq.

L9.11 $ugs Añ A_ pA^Bq for all A,B P pfs pLq.

Proof. Similar to L9.10.

L9.12 $ugs  A_ B ”  pA^Bq for all A,B P pfs pLq.

Proof. Let M P C˘ and A,B P pfs pLq. By P7.1, |A|, |B| P P˘S , and
so  p|A| ^ |B|q “  |A| _  |B| by L8.19. Consider the following:

 p|A| ^ |B|q “  |A| _  |B| iff  |A^B| “ | A| ^ | B|

iff | pA^Bq| “ | A_ B|

p˚q iff (C˘  pA^Bq ”  A_ B.

The biconditionals above follow by definition with the exception of p˚q
which is given by L9.5. Thus (C˘  pA _ Bq ”  A ^  B, and so we
may conclude that $ugs  pA_Bq ”  A^ B by Theorem T4.

L9.13 (C˘  pA_Bq ”  A^ B for all A,B P pfs pLq.

Proof. Similar to L9.10, drawing on L8.20 in place of L8.19.

L9.14 For all S PM8 and X,Y P P8S , if X Ď Y , then Y �X.

Proof. Let S P M8 and X,Y P P8S , and assume X Ď Y . Choose some
s P X. It follows that s P Y , where s Ď s since

Ů

ts, su “ s by Collapse.
Generalising on s, we may conclude that Y �X.

L9.15 X ^ pY _Zq Ď pX ^ Y q _ pX ^Zq for all S PM8 and X,Y, Z P P8S .

Proof. Let S PM8 and X,Y, Z P P8S , and assume s P X^pY _Zq. Thus
s “

Ů

tx, uu for some x P X and u P Y _Z. By L6.8, u P Y YZYpY ^Zq.
If u P Y YZ, then s P pX ^Y qY pX ^Zq, and so s P pX ^Y q_ pX ^Zq
by L6.8. Assume instead u P Y ^ Z. It follows that u “

Ů

ty, zu for
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some y P Y and z P Z, and so
Ů

tx, yu P X ^ Y and
Ů

tx, zu P X ^ Z.
Thus

Ů

t
Ů

tx, yu,
Ů

tx, zuu P pX ^ Y q ^ pX ^ Zq. Observe the following:

ğ

t
ğ

tx, yu,
ğ

tx, zuu “
ğ ď

ttx, yu, tx, zuu

“
ğ ď

ttxu, ty, zuu

“
ğ

t
ğ

txu,
ğ

ty, zuu

“
ğ

tx, uu

“ s.

Thus s P pX ^ Y q ^ pX ^ Zq, and so s P pX ^ Y q _ pX ^ Zq by L6.8.
Given the above, X ^ pY _ Zq Ď pX ^ Y q _ pX ^ Zq as needed.

L9.16 X _ pY ^Zq Ď pX _ Y q ^ pX _Zq for all S PM8 and X,Y, Z P P8S .

Proof. Let S PM8 and X,Y, Z P P8S , and assume s P X _ pY ^Zq. By
L6.8, s P X Y pY ^ Zq Y rX ^ pY ^ Zqs. If s P X, then s P X _ Y and
s P X_Z, and so s P pX_Y q^pX_Zq. Assume instead that s P Y ^Z,
then s “

Ů

ty, zu for some y P Y and z P Z. By L6.8, y P X _ Y and
z P X _ Z, and so s P pX _ Y q ^ pX _ Zq. If instead s P X ^ pY ^ Zq,
then s “

Ů

tx, uu for some x P X and u P Y ^ Z, and so u “
Ů

ty, zu for
some y P Y and z P Z. By L6.8,

Ů

tx, yu P X _ Y and
Ů

tx, zu P X _Z,
and so

Ů

t
Ů

tx, yu,
Ů

tx, zuu P pX_Y q^pX_Zq. By the same argument
given in L9.15, s “

Ů

t
Ů

tx, yu,
Ů

tx, zuu, and so s P pX _ Y q ^ pX _Zq.
Thus we may conclude that X _ pY ^ Zq Ď pX _ Y q ^ pX _ Zq.

L9.17 X ^ pY _ Zq� pX ^ Y q _ pX ^ Zq for all S PM8 and X,Y, Z P P8S .

Proof. Immediate from L9.15 and L9.14.

L9.18 X _ pY ^ Zq� pX _ Y q ^ pX _ Zq for all S PM8 and X,Y, Z P P8S .

Proof. Immediate from L9.16 and L9.14.

L9.19 $ugs A^ pB _ Cq ñ pA^Bq _ pA^ Cq for all A,B,C P pfs pLq.

Proof. Let M P C˘ and A,B,C P pfs pLq. Thus |A|, |B|, |C| P P˘S by
P7.1, and so |A|˘, |B|˘, |C|˘ P P8S . Consider the following:

M ( A^ pB _ Cq ñ pA^Bq _ pA^ Cq

iff M ( A^ pB _ Cq ď pA^Bq _ pA^ Cq and

M ( A^ pB _ Cq Ď pA^Bq _ pA^ Cq

iff M ( A^ pB _ Cq� pA^Bq _ pA^ Cq, (1)

M (  rA^ pB _ Cqs� rpA^Bq _ pA^ Cqs, (2)

M ( A^ pB _ Cq� pA^Bq _ pA^ Cq, and (3)

M (  rA^ pB _ Cqs� rpA^Bq _ pA^ Cqs. (4)

Whereas (1) follows immediately from T6 by Theorem T4, each of the
remaining conjuncts require further argument.
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Conjunct 2: Since |A|´^p|B|´_|C|´q�p|A|´^|B|´q_p|A|´^|C|´q
by L9.17, we may argue as follows:

|A|´ ^ p|B|´ _ |C|´q� p|A|´ ^ |B|´q _ p|A|´ ^ |C|´q

iff |A|´ ^ |B _ C|´ � |A^B|´ _ |A^ C|´

iff |A^ pB _ Cq|´ � |pA^Bq _ pA^ Cq|´

iff | rA^ pB _ Cqs|` � | rpA^Bq _ pA^ Cqs|`

iff M (  rA^ pB _ Cqs� rpA^Bq _ pA^ Cqs.

The biconditionals above follow from L7.1 – L7.3 with the exception of
the last which follows from L9.1. This establishes (2) as desired.

Conjunct 3: Since |A|`^p|B|`_|C|`q�p|A|`^|B|`q_p|A|`^|C|`q
by L9.17, we may argue as follows:

|A|` ^ p|B|` _ |C|`q� p|A|` ^ |B|`q _ p|A|` ^ |C|`q

iff |A|` ^ |B _ C|` � |A^B|` _ |A^ C|`

iff |A^ pB _ Cq|` � |pA^Bq _ pA^ Cq|`

iff M ( A^ pB _ Cq� pA^Bq _ pA^ Cq.

The biconditionals above follow from L7.2 and L7.3 with the exception
of the last which follows from L9.1. This establishes (3) as desired.

Conjunct 4: By T6, $ugs  A^p B_ Cq�p A^ Bq_p A^ Cq,
and so (C˘  A^ p B_ Cq� p A^ Bq _ p A^ Cq by Theorem
T4. Thus M (  A^ p B _ Cq� p A^ Bq _ p A^ Cq, and so:

M (  A^ p B _ Cq� p A^ Bq _ p A^ Cq

iff | A^ p B _ Cq|` Ď |p A^ Bq _ p A^ Cq|`

iff | A|` ^ | B _ C|` Ď | A^ B|` _ | A^ C|`

iff | A|` ^ p| B|` _ | C|`q Ď p| A|` ^ | B|`q _ p| A|` ^ | C|`q

iff |A|´ ^ p|B|´ _ |C|´q Ď p|A|´ ^ |B|´q _ p|A|´ ^ |C|´q

iff |A|´ ^ |B _ C|´ Ď |A^B|´ _ |A^ C|´

iff |A^ pB _ Cq|´ Ď |pA^Bq _ pA^ Cq|´

iff | rA^ pB _ Cqs|` Ď | rpA^Bq _ pA^ Cqs|`

iff M (  rA^ pB _ Cqs� rpA^Bq _ pA^ Cqs.

The biconditionals above follow from L7.1 – L7.3 with the exception of
the last which follows by the Unilateral Semantics. This proves (4).

Since all of the conditions (1) – (4) are met, we may conclude that
M ( A ^ pB _ Cq ñ pA ^ Bq _ pA ^ Cq, and so by generalising on
M P C˘, we know that (C˘ A^pB_Cq ñ pA^Bq_ pA^Cq . Thus it
follows by Theorem T4 that $ugs A^pB_Cq ñ pA^Bq_pA^Cq.

L9.20 (C˘ A_ pB ^ Cq ñ pA_Bq ^ pA_ Cq for all A,B,C P pfs pLq.

Proof. Let M P C˘ and A,B,C P pfs pLq. Thus |A|, |B|, |C| P P˘S by
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P7.1, and so |A|˘, |B|˘, |C|˘ P P8S . Consider the following:

M ( A_ pB ^ Cq ñ pA_Bq ^ pA_ Cq

iff M ( A_ pB ^ Cq ď pA_Bq ^ pA_ Cq and

M ( A_ pB ^ Cq Ď pA_Bq ^ pA_ Cq

iff M ( A_ pB ^ Cq� pA_Bq ^ pA_ Cq, (1)

M (  rA_ pB ^ Cqs� rpA_Bq ^ pA_ Cqs, (2)

M ( A_ pB ^ Cq� pA_Bq ^ pA_ Cq, and (3)

M (  rA_ pB ^ Cqs� rpA_Bq ^ pA_ Cqs. (4)

Whereas (1) follows immediately from T6 by Theorem T4, each of the
remaining conjuncts require further argument.

Conjunct 2: As |A|´_p|B|´^|C|´q� p|A|´_|B|´q^p|A|´_|C|´q
by L9.18, we may provide the following argument:

|A|´ _ p|B|´ ^ |C|´q� p|A|´ _ |B|´q ^ p|A|´ _ |C|´q

iff |A|´ _ |B ^ C|´ � |A_B|´ ^ |A_ C|´

iff |A_ pB ^ Cq|´ � |pA_Bq ^ pA_ Cq|´

iff | rA_ pB ^ Cqs|` � | rpA_Bq ^ pA_ Cqs|`

iff M (  rA_ pB ^ Cqs� rpA_Bq ^ pA_ Cqs.

Each of the biconditionals above hold by definition with the exception of
the last which follows from L9.1. This establishes (2) as desired.

Conjunct 3: As |A|`_p|B|`^|C|`q� p|A|`_|B|`q^p|A|`_|C|`q
by L9.18, we may provide the following argument:

|A|` _ p|B|` ^ |C|`q� p|A|` _ |B|`q ^ p|A|` _ |C|`q

iff |A|` _ |B ^ C|` � |A_B|` ^ |A_ C|`

iff |A_ pB ^ Cq|` � |pA_Bq ^ pA_ Cq|`

iff M ( A_ pB ^ Cq� pA_Bq ^ pA_ Cq.

Each of the biconditionals above hold by definition with the exception of
the last which follows from L9.1. This establishes (3) as desired.

Conjunct 4: By T6, $ugs  A_p B^ Cq�p A_ Bq^p A_ Cq,
and so (C˘  A_p B^ Cq�p A_ Bq^p A_ Cq by Theorem T4.
Thus it follows that M (  A_p B^ Cq� p A_ Bq^ p A_ Cq,
and so we may reason as follows:

M (  A_ p B ^ Cq� p A_ Bq ^ p A_ Cq

iff | A_ p B ^ Cq|` Ď |p A_ Bq ^ p A_ Cq|`

iff | A|` _ | B ^ C|` Ď | A_ B|` ^ | A_ C|`

iff | A|` _ p| B|` ^ | C|`q Ď p| A|` _ | B|`q ^ p| A|` _ | C|`q

iff |A|´ _ p|B|´ ^ |C|´q Ď p|A|´ _ |B|´q ^ p|A|´ _ |C|´q

iff |A|´ _ |B ^ C|´ Ď |A_B|´ ^ |A_ C|´

iff |A_ pB ^ Cq|´ Ď |pA_Bq ^ pA_ Cq|´

iff | rA_ pB ^ Cqs|` Ď | rpA_Bq ^ pA_ Cqs|`

iff M (  rA_ pB ^ Cqs� rpA_Bq ^ pA_ Cqs.
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The biconditionals above all hold by definition with the exception of the
last which follows by the Unilateral Semantics, thereby proving (4).

Since all of the conditions (1) – (4) are met, we may conclude that
M ( A _ pB ^ Cq ñ pA _ Bq ^ pA _ Cq, and so by generalising on
M P C˘, we know that (C˘ A_pB^Cq ñ pA_Bq^ pA_Cq . Thus it
follows by Theorem T4 that $ugs A_pB^Cq ñ pA_Bq^pA_Cq.

References

Arieli, Ofer and Avron, Arnon. 1996. “Reasoning with Logical Bilattices.” Journal of
Logic, Language and Information 5:25–63.

Fine, Kit. 2001. “The Question of Realism.” Philosophers’ Imprint 1:1–30.

—. 2012a. “Counterfactuals Without Possible Worlds.” Journal of Philosophy 109:221–
246. ISSN 0022-362X. doi: 10.5840/jphil201210938.

—. 2012b. “Guide to Ground.” In Fabrice Correia and Benjamin Schnieder (eds.),
Metaphysical Grounding: Understanding the Structure of Reality, 37–80. Cambridge:
Cambridge University Press.

—. 2012c. “The Pure Logic of Ground.” The Review of Symbolic Logic 5:1–25. ISSN
1755-0211. doi: 10.1017/S1755020311000086.

—. 2013. “Truth-Maker Semantics for Intuitionistic Logic.” Journal of Philosophical
Logic 43:549–577. ISSN 0022-3611, 1573-0433. doi: 10.1007/s10992-013-9281-7.

—. 2014. “Permission and Possible Worlds.” Dialectica 68:317–336. ISSN 1746-8361.
doi: 10.1111/1746-8361.12068.

—. 2015. “Unified Foundations for Essence and Ground.” Journal of the American
Philosophical Association 1:296–311. ISSN 2053-4477. doi: 10.1017/apa.2014.26.

—. 2016. “Angellic Content.” Journal of Philosophical Logic 45:199–226. ISSN
0022-3611, 1573-0433. doi: 10.1007/s10992-015-9371-9.

—. 2017a. “Naive Metaphysics.” Philosophical Issues 27:98–113. ISSN 1758-2237. doi:
10.1111/phis.12092.

—. 2017b. “A Theory of Truthmaker Content I: Conjunction, Disjunction and
Negation.” Journal of Philosophical Logic 46:625–674. ISSN 0022-3611, 1573-0433.
doi: 10.1007/s10992-016-9413-y.

—. 2017c. “A Theory of Truthmaker Content II: Subject-Matter, Common Content,
Remainder and Ground.” Journal of Philosophical Logic 46:675–702. ISSN 0022-
3611, 1573-0433. doi: 10.1007/s10992-016-9419-5.

—. 2017d. “Truthmaker Semantics.” In A Companion to the Philosophy of
Language, 556–577. John Wiley & Sons, Ltd. ISBN 978-1-118-97209-0. doi:
10.1002/9781118972090.ch22.

—. 2018a. “Compliance and Comand I—Categorical Imperatives.” The Re-
view of Symbolic Logic 11:609–633. ISSN 1755-0203, 1755-0211. doi: 10.1017/
S175502031700020X.

76



—. 2018b. “Compliance and Command II, Imperatives and Deontics.” The Re-
view of Symbolic Logic 11:634–664. ISSN 1755-0203, 1755-0211. doi: 10.1017/
S1755020318000059.

—. 2020. “Yablo on Subject-Matter.” Philosophical Studies 177:129–171. ISSN
1573-0883. doi: 10.1007/s11098-018-1183-7.

—. Draft. “The World of Truthmaking.” .

Fine, Kit and Jago, Mark. 2019. “Logic for Exact Entailment.” The Review of Symbolic
Logic 12:536–556. ISSN 1755-0203, 1755-0211. doi: 10.1017/S1755020318000151.

Fitting, Melvin. 1991. “Kleene’s Logic, Generalized.” Journal of Logic and Computation
1:797–810. ISSN 0955-792X, 1465-363X. doi: 10.1093/logcom/1.6.797.

—. 2002. “Bilattices Are Nice Things.” Self-reference 53–77.

Ginsberg, Matthew L. 1988. “Multivalued Logics: A Uniform Approach to Inference
in Artificial Intelligence.” Computational Intelegence 4:265–316.

Mobasher, B., Pigozzi, D., Slutzki, G., and Voutsadakis, G. 2000. “A Duality Theory
for Bilattices.” algebra universalis 43:109–125. ISSN 0002-5240, 1420-8911. doi:
10.1007/s000120050149.

Rivieccio, Umberto. 2010. “An Algebraic Study of Bilattice-Based Logics.”
arXiv:1010.2552 [math] .

Van Fraassen, Bas C. 1969. “Facts and Tautological Entailments.” The Journal of
Philosophy 66:477–487. ISSN 0022-362X. doi: 10.2307/2024563.


	Introduction
	Proof Theory
	Semantics
	Soundness
	Completeness
	Infinite Fusion
	Negation
	Bilattice Theory
	The Logic of Essence and Ground

