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Abstract

Drawing on Kit [Fine’s| (2012} 2017blc) state semantics, this chapter es-
tablishes soundness and completeness for The Specific Logic of Unilateral
Ground (UGS). I will begin by restricting consideration in §2| to a proof
system UGSN in which a specificity operator has been included and nega-
tion does not occur within the scope of a grounding operator, providing
a semantics for UGSN in §3] where propositions are closed under finite
fusion. After proving soundness and completeness for UGSN in §4] and
will extend these results in §6|to a class of models where propositions
are closed under infinite fusion. In §7] I will extend UGSN to UGS which
permits negation to occur within the scope of the unilateral grounding
operator, showing that UGS is sound and complete over the class of
bilateral infinite fusion models. By contrast with the Boolean lattices
of extensional and intensional logics, I will show in §8| that the space of
hyperintensional propositions under study form a bounded bilattice which
is neither distributive nor interlaced. I will conclude in §9| by defining
bilateral essence and ground in terms of unilateral ground, deriving a
range of theorems and admissible rules by which to reason with bilateral
essence and ground.

1 [(INTRODUCTION

In a number of publications, Kit [Fine (2012c, 2016, 2017alb,c|) has developed
a hyperintensional theory of propositions in which propositions are exactly
verified and ezactly falsified by statesE Whereas worlds are understood to
be maximal on account of determining the truth-value of every proposition
whatsoever, states are required to be wholly relevant to the propositions that
they exactly verify or falsify, and so are able to draw distinctions which worlds
cannot. In addition to abandoning the maximality required of worlds, states
need not be possible. Although a primitive distinction between possible and
impossible states plays a critical role in developing a state semantics for modal
logic, no such distinction will be needed for the present pursuit. Accordingly,
both the semantic machinery used to study validity in the logic of ground, as

! Fine has developed applications of the state semantic framework to a wide variety of topics,
reaching well beyond the semantics of ground. See |Fine| (2012a;, 2014} 2013} 12018alb, [2020).
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well as the intended model used to guide our interpretation of the semantics
may be said to be free of any dependence on primitive modality.

Given the requirement that states be wholly relevant to the propositions
which they exactly verify or falsify, the exact verifiers for A and —A will not
typically partition the set of states. Rather, many states may exactly verify
neither A nor —A, where similarly, many states may exactly falsify neither
A nor —A. Moreover, the exact verifiers for A will in no way determine the
exact verifiers for —A, and so without recourse to exact falsification in addition
to exact verification, there is no systematic way to relate the propositions
expressed by a sentence and its negations. Accordingly, I will follow Fine
in taking the exact verifiers for —A to be the exact falsifiers for A, and the
exact falsifiers for —A to be the exact verifiers for A. In this way the bilateral
proposition consisting of both exact verifiers and falsifiers assigned to a sentence
will determine the bilateral proposition assigned to its negationﬂ

Just as the set of exact verifiers (falsifiers) for —A is not the complement
within the set of states of the exact falsifiers (verifiers) A, it also follows
from the requirement that states be wholly relevant to the propositions which
they exactly verify or falsify that conjunction cannot be interpreted by set
intersection as in extensional and intensional semantics. For instance, the exact
verifiers for A may be disjoint from the exact verifiers for B, and yet A A B may
have exact verifiers. Given a notion of state fusion, I will follow Fine in taking
A A B to be exactly verified by any fusion of an exact verifier for A and an exact
verifier for B. Similarly, given an exact falsifier for A, and an exact falsifier
for B, their fusion will be an exact falsifier for A v B. Additionally, I will
assume what Fine calls an inclusive semantics for disjunction and conjunction
where any exact verifier for A, B, or A A B is an exact verifier for A v B,
and any exact falsifier for A, B, or A v B is an exact falsifier for A A B. As
brought out below, the sets of exact verifiers and falsifiers for propositions will
be closed under fusion. Building on Fine’s work, it remains to develop a logic
for the most natural entailment relations holding between propositions in this
hyperintensional setting.

We may begin by observing that in any theory of propositions where
propositional identity satisfies the Boolean identities, disjunctive part may
be shown to be the converse of conjunctive part, where entailment may be
defined in terms of either. More specifically, letting A < B:= A v B= B and
A B:= A A B= B where ‘=’ is taken to express propositional identity in
a given theory, we may show that if the theory of propositions in question is
Boolean, then (A < B) « (B & A)E| For instance, assuming an extensional
theory of propositions, ‘<’ expresses the material conditional and ‘=’ expresses
its converse. Similarly, in an intensional theory of propositions, ‘<’ expresses
the strict conditional whereas ‘C’ expresses its converse. On both extensional
and intensional theories of propositions, there is just one entailment relation

2 See [Fine| (2017dlb)) for further discussion.

3 Proof: If A < B, it follows that A v B = B, and so by substitution A A (Av B) = A A B.
By absorption, A= A A B, and so B = A. The reverse derivation is similar. O
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since nothing new is added by also including converse relations.

Whereas in extensional and intensional logics, conjunctive and disjunctive
part are converse relations, these definitions correspond to distinct entailment
relations in the present setting. As brought out in the theory of bilateral
propositions elaborated below does not satisfy the Boolean absorption laws,
where as a result (A < B) « (B £ A) does not hold in general. Accordingly,
the state semantic framework admits of two natural entailment relations = and
< which I will call by the names essence and ground, respectively. Informally, 1
will take ‘=" and ‘<’ to regiment ‘necessary for’ and ‘sufficient for’ respectively,
where essence and ground may be shown to track relevance in addition to
modal profile. Additionally, I will take both essence and ground to be “worldly”
insofar as they are to relate propositions understood as things being certain
ways rather than representations of things being some way or other. Moreover,
I will assume essence and ground are reflexive and non-factive so that every
proposition grounds itself independent of whether that proposition obtains or
not. Both the irreflexive and factive analogues may then be defined in terms
of the reflexive non-factive notions of essence and ground[]

Although essence and ground are not converses, essence and ground are
nevertheless interdefinable in a language with a negation operator which satisfies
the involution law ——A = A. As shown in §§, both (A < B) < (—-AE —B)
and (A £ B) & (—A < —B) are valid, where the space of bilateral propositions
may be shown to form a bilattice ordered by essence and ground. Given that
essence and ground are interdefinable, I will take "A & B' to abbreviate
"—A < —B" purely as a matter of convention, defining propositional identity
in terms of essence and ground rather than vice versa in In order to
articulate such definitions, negation must be permitted to occur within the
scope of a grounding operator. However, we may observe that sentences of
this kind are excluded from [Fine’s| (2012c) Pure Logic of Ground (PLG) which
aims to study the atomic sentences which can be articulated by a range of
primitive grounding operators in the absence of any other operatorsﬁ

Instead of admitting distinct primitives for each notion of ground that Fine
includes in PLG while excluding all other operators from the logic, I will begin
with a single primitive grounding operator ‘<I’ which I will refer to as unilateral
ground. In contrast to < which imposes constraints on both the exact verifiers
and falsifiers for the propositions involved, A < B only requires that every
exact verifier for A is also an exact verifier for B. We may observe that the
semantics for unilateral ground is similar to the semantics for the material and
strict conditionals, only that bilateral propositions have been substituted for
extensional and intensional propositions. Nevertheless, we may define < and
E in terms of < given a language which includes the extensional operators:

Unilateral Equivalence: Let "A ~ B" abbreviate "(A < B) A (B < A)".

1 See CHAPTER 2 as well as [Fine| (2001} |2012b), [2015) for related philosophical discussion.
5 See §5 in CHAPTER 2 and §1 in CHAPTER 4 for related discussion of these definitions.
6 See CHAPTER 1 for further discussion.
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Unilateral Essence: Let "A > B" abbreviate "A A B ~ B".
Ground: Let "A < B" abbreviate (A< B) A (—mAD> —B)".
FEssence: Let "A T B' abbreviate (A> B) A (—A < —-B)".

Restricting attention to a language which includes ‘<’ rather than ‘<’ among
its primitive operators has the effect of greatly simplifying the present attempt
to provide a complete logic for groundm In order to define ground in terms of
unilateral ground, the operator for negation must be permitted to occur within
the scope of a grounding operator, where conjunction is permitted to occur
between atomic grounding sentences. Accordingly, I will lift the restrictions
that Fine imposes in developing PLG, permitting any extensional combination
of atomic unilateral grounding sentences of the form "A < B" where at most
the extensional operators may occur within “A" and "B".

Despite admitting of a much wider range of well-formed sentences than
is included in PLG, I will nevertheless exclude consideration of sentences in
which grounding operators occur within the scope of a grounding operator, as
well as purely extensional sentences and extensional combinations on purely
extensional and non-extensional sentences such as "A A (A < B)'. Although
one might hope to provide a logic which admits of a wider range of sentences,
such ambitions reach beyond the scope of the present pursuitﬁ

By contrast with the attempt to establish completeness for a logic with a
primitive grounding operator, Fine and Jago (2019)) provide a complete logic
for their exact entailment relation | which holds between a set of sentences in
a purely extensional language and a further sentence of that language. Whereas
grounding operates on propositions, exact entailment is a logical consequence
relation which quantifies over both models and states’] Fine and Jago also
require the exact verifiers and falsifiers for a proposition to be convex insofar
as any state between two exact verifiers (falsifiers) in mereological order for
a proposition must also be an exact verifier (falsifier) for that proposition.
However, imposing convexity requires making some alteration to the inclusive
semantics for conjunction and disjunctionm Nevertheless, were Fine and Jago
to abandon their convexity constraint, we could show that A | B just in case
A < B is valid on the definition of validity that I will go on to provide. Thus I
will not further consider exact entailment in what follows.

In addition to taking ‘<’ to be primitive and ‘<’ to be defined, I will
also include a specificity operator ‘$’ in the language presented below. Let
a proposition be called specific just in case exactly one state verifies that
propositionE The specificity operator may be compared to the singularity

" See CHAPTER 1 and |Fine| (2012b) for discussion of a range of further grounding operators
which may be defined in terms of ground in a language which includes extensional operators.
8 See §7 of CHAPTER 4 for discussion of the semantics limitations the present framework
faces in attempting to interpret sentences with nested grounding operators.

9 I have adapted their notation to avoid confusion with what is to come below.

10 See §6 in CHAPTER 3 and §3 in CHAPTER 4 for discussion.

" Fine| (2017c, p. 695) employs the label ‘determinate’ rather than ‘specific’.
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predicate ‘S’ included in plural logics where "S(aa)’ reads "There is exactly one
of the aas’, as well as to the numerical possibility operator ‘0,” where "1 A’
reads "There is exactly one possibility in which A'. As brought out in the
specificity operator will play a crucial role in the completeness proof, where
states in the Henkin model are ground-theoretic equivalence classes generated
from specific sentences, where attempts to establish completeness without a
specificity operator faced numerous difficulties. Although the motivation for
including the specificity operator in the logic takes a purely technical form,
specificity operators are nevertheless of interest in their own right.

The completeness proof will be structured as follows. I will begin in §2| by
introducing The Specific Logic of Unilateral Ground without Negation (UGSN)
in which negation does not occur within the scope of a unilateral grounding
operator, providing a state semantics for UGSN in which the exact verifiers for
a proposition are closed under finite fusion in I will then prove that UGSN
is both sound and complete over the class C of finite fusion models in §4] and
respectively. These results will then be extended to a class of models C*
in which exact verifiers are also closed under infinite fusion in proving in
that The Specific Logic of Unilateral Ground (UGS) in which negation is
permitted to occur within the scope of a unilateral grounding operator is sound
and complete over the class CT of bilateral infinite fusion models. Instead of
forming a Boolean lattice, I will I show in §8| that the space of propositions
forms a bounded bilattice which is neither distributive nor interlaced. I will
conclude in §9| by deriving a subsystem of UGS which I will call The Logic of
FEssence and Ground (EG) which includes a range of theorems and admissible
rules for reasoning with essence and ground.

2 |PrROOF THEORY

We may begin by restricting consideration to a simplified propositional language
L~ where the well formed sentences are built up in two separate stages. Given
a set of sentence letters L = {p; : i € N} together with a set of extremal
constants E = {T,1,V, L}, we may define the pre-formed sentences (pfs) of
L™ as follows, where p € L and e € E are both arbitrary:

Auz=ple|AnA| AV A

I will refer to “7’ as the top and ‘L’ as the bottom, reading ‘V’ as the verum
and ‘L’ as the falsum. As brought out in T is the proposition which is
exactly verified by any state whatsoever, whereas V is only exactly verified by
the fusion of all states. Additionally, L is exactly verified by no states, whereas
1 is only exactly verified by the state which trivially obtains.

Let pfs(L~) be the set of pfs of L=, where A, B,... € pfs(L™), and
comp(A) is the number of occurrences of ‘v’ and ‘A’ in A. If A, B € pfs(L™),
then both "$A" and "A < B" are well formed atomic sentence (wfas) of L™,
where atoms(L£7) is the set of all wfas of £7. We may then define the well
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formed sentences (wfs) of L7, letting o € atoms(L™) be arbitrary:

pu=al-plonp|ove.

Let wfs(L™) be the set of wfs of £, where ¢,v,... € wfs(L™), and let
comp™ (¢) be the number of occurrences of ‘=", ‘v’ and ‘A’ in ¢ which do
not occur in any preformed subsentences (sub-pfs) of ¢. For any sentences
A,Bepfs(L7), "A < B’ reads Tt being the case that A grounds it being the
case that B', or more simply, "A grounds B', indicating that A obtaining is
sufficient for B to obtain. We may also read "$A" as "There is exactly one way
for it to be the case that A", or more simply, "A is specific', indicating that
there is only one state which exactly verifies A. As we will see, the theorems
of the logic belong to wfs(L£™) and not to pfs(L7).

As usual, ‘=’ and ‘<>’ may be introduced as metalinguistic abbreviations,
where I will also take "A 4 B" to abbreviate '—(A < B)", letting ‘A ~ B’
abbreviate "(A < B) A (B < A)" which expresses ground-theoretic equivalence.
Given the formation rules for L7, we may define syntactic consequence Fygsn
for The Specific Logic of Unilateral Ground without Negation (UGSN) to be
the smallest relation closed under truth-functional consequence which satisfies
the following, where A, B,C, D € pfs(L) and I' U {p} < wfs(L):

Grounding Axioms and Rules

GAl1l A<AvB. GA2 B<JAvB.

GA3 A<JAAA GA4 AANAJSA

GA5 AA(BAC)J(AAB)nC. GA6 (AAB)AC<CAA(BACQC).
GA7T AAB<BAA. GA8 A4dB,C<IDRHAACLBAD.

GA9 A<B B<CHA<C.

Extremal Axioms

VF1 §$.l. VF2 §V.

VF3 L AAJZA VF4 AJLlAA
VF5 VAAQV. VF6 VIV aA
VE7 AJT.

Specificity Rules
SP1 $A- A4 L. SP2 A~ B $A < $B.
SP3 $A4,3B+ $(A A B). SP4 $A,B< A+ (A<B)v (BJ1).
SP5 $A/AJC Vv D (ALC)v (A<SD)v (A<SC A D).

SP6 If '+ $p — [(p < A) — (p I B)] where p € L does not occur in A, B, or in
any yeI', then ' - A< B.
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SP7 UT,[(ALL)A(ASBAC) > [SpaSgn(pIB) A (@LC)A(prglA)] o
where distinct p, g € L do not occur in ¢ or in any v € I, then I - ¢.

A wfs p of L7 is a theorem of UGSN just in case Fyasy . Letting “ppa/p)" be
the result of uniformly replacing all occurrences of "B' in "p' with "A", and
taking "4/ 3)1 to be the result of replacing zero or more occurrences of "B’ in
"' with "A", we may derive the following admissible rules and theorems:

Admissible Rules

ARI] A<C,BdCtyesyn Av B<C.

AR3 A~ Btlyen C = C’(A/B)'

Grounding Theorems

Tl AA1l<B.
T3 A<An(Av B).
T5 AAB<Av B.

Equivalence Theorems

El1
E3
E5
E7

E9

Ell Av(Bv(C)=(AvB)vC.
[E1I3] AA(BvC) =~ (AAB)Vv(AAC).

Axr A
AvT~T.
Av 1 ~A
Av A~ A
Av B~ BvA.

[AR2| IfI' Fyesy @, then F[A/p] Fuasy PLA/p]-
AR4 A=~ B,p byesy $(A/B)-

T2 A<BvVvT.
T4 A<Av (AAB).
M6 Av(BAC)<J(AvB)a(AvO).

E2 AAnl~Ll.

E4 AAV=YV

E6 AALl~~A

E8 AAA=x A

E10 AAB~DBAA.

El12 AA(BAC)~(AAB)AC.
E14 AA(BAC) =~ (AAB)A(AAC).

It is worth observing that of the equivalences for bounded distributive
lattices, the following four principles are conspicuously absent:

#Absl A A (Av B)=~ A.
#Abs2 Av (AAB)=~ A

#Dist Av (BAC)~(Av B)A(Av ().

The following section will present countermodels to each of the above, and so
the corresponding space of propositions does not form a distributive lattice.
We may also note that although is a theorems of UGSN, its dual #Dist
is not. As I will bring out in §7] these apparent asymmetries may be shown
to be an artefact of our present concern with unilateral propositions. Once
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negation is permitted to occur within the scope of the grounding operator, we
may derive a range of theorems in §8 which maintains duality.

I will now provide proofs for selected theorems and admissible rules which
are novel to UGSN, assuming standard results from classical logic.

ARl [AJIC.BIC Fuem AV BT

Proof. Let A, B,C € pfs(L™) and choose some p € L which does not
occur in A, B, or C. Thus A < C,B <C Fyesy A A B <C follows

from [GAS| and [GA4] by [GA9] Additionally, we know by that
$p,p LAV Blyesy < A) v (p<B) v (p<A A B). Consider:

pIAALC Fyesn pC (1)
pIB,BAC Fuyesw pIC (2)
pﬂA/\B,A/\BﬂC }_UGSN pﬂc (3)

It follows that A< C,B<C,$p,p XAV B Fycsy p I C. Thus we know
that A< C,BIC fyesx $p — [(p<A v B) — (p<C)], and so by [SP6|
A<C,B<LC yesy A v B<C since p does not occur in A, B, or C. O

AR2 [lf I Fyasy @, then T'a/p) Fuess ©rap)- (Uniform Substitution)|

Proof. The proof goes by induction on the number of applications of the
metarules in UGSN, where the only novel cases are given below:

Case SP6: Assume T' 1 ¢ follows by [SP6] Thus ¢ = A< B
where T’ 5 8¢ — [(¢ < A) — (¢ < B)] for some ¢ € L which does
not occur in A, B, or any v € I'. Thus we know by hypothesis that
Tram) Fiass Sapam = Wapam) < Apam) = (apagm) < Bram)]- e = q,
then it follows trivially that I' 4/,) Figsx Pra/p) since ¢ does not occur in
A, B, or any v € I'. If instead p # ¢, then it follows from the above that
Crasp Ficsy $¢ = [(@ L Apazpy) — (¢ < Bpagp)], for some ¢ € L which
does not occur in A, B, or in any v € I'. Again by hypothesis, we know
that Liajp) (g q) Flas $dig /a1 = 410101 < Arag) = (@igejq) < Brap))l;
where we may choose ¢* € L to be the sentence letter with the lowest index
which does not occur in Apa /), Brasp), or in any v € I'[4/,). Equivalently,
Tra/p] Flo $¢* — [(¢* Atasp)) — (¢* < Bpajpy)] where ¢* does not
occur in A[A/p] y B[A/p]7 or in any vy € F[A/p]' Thus it follows by @ that
Liasp) Foesy Arazp) < Biajp), and 50 Liajp) Fis 91a/p)-

Case SP7: Assume I' -7 ¢ follows by Thus it follows that
T, [SAA(AIBAC)] = [$rASga (rIB) A (¢C) A (rAq<LA)] Fuass @
where distinct r, ¢ € . do not occur in . By hypothesis we know that:

Lrasp)s [SAram A (Apas) < Brap A Crazm)] —

[$71a/01 A Saraser A (rrazm L Bragp) A (qragp < Cragpy) A (rrage) A qrage < Aragp))]
Lrazp Fiiess Sarazm — [arazm < Apagm) = (aragm < Brap)l- i p =g,
then it follows trivially that I'4/,) Figsx Pra/p) since ¢ does not occur in
A, B, or any v € I'. If instead p # ¢, then it follows from the above that

Lrasp Focsy $¢ = [(@ L Apagpy) — (¢ < Bpagp)], for some ¢ € L which
does not occur in A, B, or in any v € I'. Again by hypothesis, we know
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that Trazpfge/q) s Sag /a1 = [(d1a a1 < Apage)) = (agq+/) < Brag)]:
where we may choose ¢* € LL to be the sentence letter with the lowest index
which does not occur in Ap4/p), Blayp), or in any v € I' 4/,). Equivalently,
Drajp Fies 8¢ = [(¢* < Apagp)) — (¢ < Bpagp))] where ¢* does not
occur in Apayy), Blajp), or in any v € T'pa/y). Thus it follows by [SP7] that
Liasp) Fiesy Arajpl < Biayp), and 50 Tiajp) Hicsy 91a/pl-

Given that I'[4/p) Fiasy $[4/p) holds in each of the cases above, we
may conclude by discharge that if I' ={loqy @, then ' p) Hlasn Pra/p)s
and so by induction that if " -yesy ¢, then I'a/,) Fuasy Pra/p)- O

Tl |Fyen AA LB

Proof. Let A, B € pfs(£™) and choose some p € . where p does not
occur in either A or B. Observe that $p Fyesy p L by and so by
propositional logic we know that $p,p<XAA L byesn (P LL)A(pTAAL).
Choose distinct 7, ¢ € I which do not occur in A, B, or p. Consider:

(PEL)APLAAL)] > [$ras$gnan (rIL)A(gLA) A (ragdp)]. (%)

Thus $p,p <A A L, (%) Fuesn Sr ASg A (r <L) A (g A) A (r A qgdp),
follows by propositional logic. However, we know that Fygey $7 — (r L)
by and S0 Fygsy —9r v (r 1) by abbreviation. It follows that
Fuasy =8 v =8¢ v (r€L) v (g€ A) v (r A g{p) by propositional logic,
and 80 Fygsy —[$7 A 8¢ A (r <L) A (g A) A (r A gdp)]. Tt follows
that $p,p <A A L, (%) Fuasy ~[$r A8gA (r<IL) A (gD A) A (rAgdp)].
Thus $p,p <A A L, (%) Fuasy p < B by ex falso quodlibet, and so we may
conclude that (%) Fuesy Sp = [(p<A A L) > (p< B)].

Given the above, Fyesy $p = [(p <A A L) — (p < B)] follows by
[SP7] Since p € L where p does not occur in either A or B, we may
conclude that Fyesy A A L < B by [SP6]as desired. O

T6 [Foam AV (BAC)I(Av B) A (Av O]

Proof. Let A, B,C € pfs(L~), and choose some p € L where p does not
occur in A, B, or C. Observe that $p Fyesy pLL by and so by
propositional logic $p,p <A A (Bv C) Fyesy @ L L) A (p<AA (B vV QO)).
Choose distinct 7, ¢ € L. which do not occur in A, B, C', or p. Consider:

[(PEL)APIAANBVO)] = [Brasgn (rdA)A(gIBvC)A(ragdp)]. (*)

So $p, pIAA(BVv ), (%) Fuasy $rASqA (r<A) A (¢IBVvC) A (raq<lp),
and so by [SP4] that $p,r A ¢ <Ip Fuesx (P<7 A q) A (1 A g< L), where
it follows from @ that $r, 8¢ Fuesn $(r A ¢), and from that
$(rAq) Fuess T A gL L. Thus $p,pSAA(Bv ), (%) Fuesx L7 A g
by propositional logic. We may now observe that it follows by that
$¢,<IB v CFuesx (<IB) v (¢<2C) v (¢ < B A C). Consider:

p<rAqr<AqdB Fuysx PI(AAB)v(AAQ) (1)
pLraqrdAqAC Fusy PL(AAB)v(AAC) (2)
p<LrAgr<AqIBAC byesy PI(AAB)v(AAC). (3)

Here, (1) follows by (GA8]|GA1| and where (2) is similar but draws
on in place of [GA1]l In order to justify (3), it is enough to observe
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that Fyesy A A (BAC)<(AAB)A(AAC) by and so together
with [T5] we may conclude that Fugen A A (B A C) < (A AB)v (AAC).
Together with and (3) follows. Thus we may conclude that
$p,p<AA(Bv ), (%) Fvasn P (A A B) v (A AC). Since r and ¢
are distinct and do not occur in A4, B,C, or p, we know by [SP7| that
$p,p SAA(BVC) Fuesk < (AAB) v (AAC), and so it follows
that Fyesy 0 > [P <A A (BVv C) > p<(A A B)v (AnaC)]. Thus
Fuass A A (B v C) < (A A B) v (A A C) follows by [SP6] O

E13 “_UGSNA/\(BVC) %(A/\B) \ (A/\C)l

Proof. Given that yesn A <A by and —yasy B < B v C by
we know that Fyesy A A B<SA A (B v C) follows by milarly,
Fuesy A A C <A A (B v Q) follows by [GA2] and [GAS| Thus
Fuesy (AAB) v (AAC)<IA A (BvC) follows by [AR1] and so together
with[T6|we may conclude that Fygsy AA(BvC) ~ (AAB)v(AAC). O

3 |SEMANTICS

This section will draw on Kit Fine’s (2017bljc) recent work in order to provide
a semantics for £~. Rather than working over a space of possible worlds W
with an accessibility relation R, I will follow Fine in taking S to be a set states
of affairs, or states for shortH Let a state space S be any ordered pair (S, *)
where S is any set closed under the binary operation *, mapping any two states
to their fusion. A state space (S, x) is mereological just in case it satisfies:

Null State: There is a null state o € S such that oxs = s for all se S.
Full State: There is a full state m € S such that m x s = = for all s € S.
Idempotency: s+s = s for all se S.

Commutativity: s+t =t s for all s,t€ S.

Associativity: (s*t)*r = sx* (t*r) for all s,¢,r € S.

Assuming a “no class”-theory of classes, we may let M be the class of all
mereological state spaces, employing set notation where convenient. In order to
define the relevant classes of models for £7, consider the following definitions:

Fusion: X = {xxy:xz,ye X}.
S-Propositions: Ps = {X € S: X = X}.

Given any § € M where S = (S, x), a unilateral S-model of L~ is an ordered
triple M, = (S, ,| - |,) where |p|, € Ps for all p € L. For ease of exposition,
it will often be convenient to drop the subscript which names the model. We

12 See |Fine| (2017a} [Draft) for discussion.
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may then let Cs be the set of all S-models, and C = [ J{Cs : S € M} be the
proper class of all models of £~ whatsoever.

We may now provide a Finean state semantics for exact verification |- for
all pfs £~ by means of the following recursive clauses:

Unilateral Pre-Semantics:

(pi) M,sI-piiff s€|pil

(T) M,sI-T iff s=s. V) M,sl-Viff s=n.
(L)Y M,siFLiff s+#s. (L) M,sl-Liff s=no.
(A) M,sl-AABiff s=dxt where M,dI- A and M,t | B.
(v) M,sl-Av Biff M;slFAor M,s|-Bor M,s|+AnB.

Since there is no threat of ambiguity in what follows, I will often drop ‘exact’
from ‘exact verification’. The semantics may be called unilateral on account
of only including clauses for verification as opposed to both verification and
falsification as will be given below[l3] Whereas only the null state o verifies the
1, no state verifies the L. By contrast, every state verifies the 7, whereas only
the full state » verifies V. The conjunction clause formalises the idea that only
a fusion of verifiers for each of the conjuncts will verify the conjunction as a
whole. In the case of disjunction, a verifier for either disjunct will verify the
disjunction, as will a fusion of verifiers for each of the disjuncts.

Given that each M € Cs assigns every p € L~ to a proposition [p| € Ps
consisting of the verifiers for p in M, we may extend | - | to all A € pfs(L™):

Unilateral Valuation: s e |A| iff M,s |- A.

Letting |A| be the proposition that A € pfs(L™) expresses in M, we may
define the extremal propositions in Pg as follows:

Unilateral Extremal Propositions:
Top: Ts=S5. Verum: Vs = {m}.
Bottom: ls=@. Falsum: Llgs = {o}.

When ambiguity does not threaten, I will drop the subscript, letting context
determine the corresponding state space.

Having extended the valuation function to all A € pfs(£~) in Unilateral
Valuation, we may now state the semantics for the wfs of L~ as follows:

Semantics:

(@) MeA<Biff A< B

13 See [Fine| (2016 2017alblc) for this usage. [Fine| (2017b) provides a semantics for sentences
which includes negation, crediting |[Van Fraassen| (1969) for providing a related construction.
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) M E $A iff there is exactly one s € |A].
) ME—p iff M.

) MEeAYiff MEypand M E .

) MEevYiff MEgpor ME 1.

The semantic clause for grounding holds that A < B is true in M just in case
every exact verifier for A is an exact verifier for B, where $A is true in M just
in case A is verified by only one StateE Let ¢ be a logical consequence of T’
over C— symbolised by ‘I' =¢ ¢’— just in case for all M € C, if M = B for all
BeTl, then M E ¢. A wfs ¢ is C-valid just in case ¢ ¢.

We may now define algebraic analogues of conjunction and disjunction
which are defined over the space of propositions Pg:

Product: X NY ={zxy:ze X, yeY}.
Sum: X vY =XuY U (X AY).
Given any S € M, we may let As = (Ps, A, v, L, L.V, T) where not only are
T,L,V, L ePg, but we may show that Pg is closed under A and v as follows:
[L32] X AY ePsforallSeMand X,Y € Ps.
L33 XvYePsforall SeMand X,Y € Pg.

By the formation rules, Ay— = {(pfs(L7), A, Vv, T,L,V,L)is an algebra with
the same signature o,- = {{A, v}, E) as Ag, where the valuation function
induced by any M € Cs is an £~ -homomorphism |- | : A,- — Ags as below:

L~ -Homomorphism: For any S € M and M € Cg, the function |-|: L~ — Ag is
an L~ -homomorphism iff for every A, B € pfs(L) both: (1)
|A A B| =|A| A |BJ;and (2) |A v B| = |A| v |B].

L34 |AAB|=|AlA|B| P31 |A|€Ps.
L35 |Av B|=|A|v|B|

The results above will be of use throughout what follows, where in §7| similar
results may be shown to hold once negation is included in the language.

We may then observe that (Ps, Ay and (Ps, v) are semilattices on account
of satisfying idempotency, commutativity, and associativity. In particular, the
following identities hold for all S € M and XY, Z € Pgs:

14 Fine| (2012blc) gives a similar semantics for < in a language without $, =, A, and v.
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36 X AX-=X. L399 XvX-=X.
XAY =Y AX. C[310 XvY=YvX.

38 (X AVAZ=XA(YAZ). @& XvY)vZ=Xv(Yv2Z).

Despite these results, .As need not form a lattice on account of failing to satisfy
the absorption laws, since there is some S € M and X,Y € Pg such that:

L3138 XA (XVvY)#X. L339 Xv(XAY)#X.

In addition to failing to form a lattice, we may show that Ag is non-distributive
since there is some S € M and X,Y € Pg such that:

L3217 Xv({YAZ)#(XVvY)A (X Vv Z).

These results correspond to the absence of #Abs1, #Abs2, and #Dist from
UGSN, where the following section shows that #Absl, #Abs2, and #Dist
are not theorems of UGSN. Nevertheless, for all S € M and X,Y € Pgs:

L322 XA(YVvZ)=(XAY)v(XAZ).

Although v does not distributes over A, we may distribute A over v. As we
will see in §7] the apparent asymmetry above will disappear once negation has
been included in the language. The remainder of the present section will be
devoted to establishing a selection of the claims enumerated above, drawing
on these results to prove that UGSN is sound over C in the following section.

L31 XAYuZ)=XAY)u(XAaZ)forallSeM and XY, 7 € Ps.

Proof. Assume S € M and X,Y,Z € Pg, letting s € X A (Y U Z). Tt
follows that s = z * u for some r € X andue Y u Z. If ue Y, then
s€ XAY,andsos € (XAY)U(X AZ). Similarly, ifu e Z, thens e XA Z,
andsose (X AY)U (X AZ). Thus XA (YUuZ) S (X AY)u (X A2Z).

Assume instead that s € (X AY)U(X AZ). If se X AY, then s = z*y
forsomeze X andyeY,andsoyeY uZ Thusse X A (Y u Z).
Similarly, if s € X A Z, then s = x * z for some z € X and z € Z, and so
zeYuZ. Thusse XA(YuZ),andso (X AY)U(XAZ)S XA(YUZ).
Together with the above, X A (Y UZ) = (X AY)U(X AZ) asneeded. O

L3.2 [XAYePsforall S€e Mand X,V € Pg|

Proof. Assume S € M where X,Y € Pg, and choose some s € X A Y.
By Idempotency, se X AY,andso X AY € X A Y. To establish the
converse inclusion, assume that s € X A Y. It follows that s = z x y for
some z,y € X AY,and so x = u*v and y = w * z for some u,w € X and
v,z€ Y. It follows that u *w € X and v+ z €Y. Given that X,Y € Pg,
we know that X = X and Y =Y, andso uxw € X and v+ z € Y. Thus
(uxw)*(vxz) e X AY, where (u*w) * (v 2) = s by Associativity and
Commutativity. It follows that se X AY,andso X AY € X AY. Thus
we may conclude that X AY =X AY,andso X A Y € Pgs. O

13
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L3.3

L3.4

L3.5

L3.6

L3.7

L3.8

IXvY ePgstorall S5e Mand X,Y € Pg.|

Proof. Follows from the definition of Ps together with the Idempotency,
Commutativity, and Associativity of all S € M as in [L3.2] O

[[A A B] =]A| A |B] for all A, B € pfs(L~) and M € Cg|

Proof. Let A, B € pfs(£L~) and M € Cs. By Unilateral Valuation,
we know that |A|,|B| € S. We may then consider the following:

se|AAB| iff M,slIFAAB
iff s =ax*bwhere M,a |- A and M,b |- B
iff s=a*b where a € |A| and b € |B|
iff se|A| A |B.

All of the biconditionals above hold by definition. Thus we may conclude
that |A A B| = |A| A |B| as desired. O

[[Av B| =|A| v |B] for all A,B¢€ pfs(L~) and M € Cgs.|

Proof. Let A,B € pfs(L~) and M € Cs. By Unilateral Valuation,
we know that |A|,|B| € S. We may then consider the following:

se|Av B| iff M,slIFAv B
iff M,slHA, or M,sl-B, or M,slFAAB
iff selA|, or se|B|, or se|A A B|
(t) iff s€lA|, orse|B|, or se |A| A |B|
iff selAlv|Bl v (Al A |B])
(1) iff selAlvIB.
The biconditionals above all hold by definition with the exception of (1)

which follows by and (f) which follows by Sum. Thus we may
conclude that |A v B| = |A| v |B|. O

IXAX=XtorallSe M and X € Ps or X € Pg |

Proof. Assume S € M and X € Pgs, and let s € X A X. It follows that
s =z x for some z € X, and so s € X. Since X € Ps or X € Pg, we
know that X = X, and so s€ X. Thus X A X € X.

Assume instead that s € X. By definition, s x s € X A X, and so
se€ X A X by Idempotency. Thus X € X A X, andso X A X =X. [O

IXAY =Y AXforall S5eMand X,Y € Pgs.|

Proof. Assume S € M and X,Y € Pg, letting s € X A Y. It follows that
s=zxxyforsomere XandyeY. Thusyrxz e Y AX,andsose Y A X
by Commutativity. We may then conclude that X AY € Y A X, and so
X AY =Y A X by symmetry of reasoning. O

(X AY)ANZ=XANY AZ)forallSeMand X,Y, 7 € Ps

14
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Proof. Assume S € M and X,Y, Z € Ps, we may then reason as follows:

EXAY)AZ iff s=uxzforsomeue X AY and z€ Z
iff s=(xxy)xzforsomezeX,yeY, and z€ Z
(%) iff s=xz*x(y*z)forsomeze X,yeY, and z€ Z
iff s=xxvforsomexe X, andveY A Z
iff se X A(Y AZ).

The biconditionals above all hold by definition with the exception of ()
which is given by Associativity. Thus (X AY)AZ =X A (Y A Z). O

L3.9 | X v .X=Xforall $eM where X € Ps or X € Pg.|

Proof. By definition, X v X = X U X = X. Given that X € Ps or
X € Pg, we know that X = X, and so X v X = X as desired. O

L3.10 XvY =Y v XforallSeMand XY € Pg|

Proof. By definition, XvY = X uY =Y v X since XuY =YuX. O

L3.11 [XvY)vZ=Xv (Y v Z) foralSeM and X,Y, Z € Pg

Proof. Assume S e M and X,Y, Z € Ps. We may then reason as follows:

XvY)vZ = XvY)uZul[(XVvY)naZ]
= XUYUZUuXAY)U[(XUY U[X AY])AZ]
(1) = XuYUZUuXAYVVUXAZD)UXY AZ)U[(XAY)AZ]
2 = XUYUZU(YAZ) U(XAY)U(XAZ) U[X A (Y AZ)
B) = XuYUuZul¥ AZ)u[ XA uZUlY AZ])]
= X v ulX Al v2D)
= Xv(Yv2Z2).

Whereas both (1) and (3) follow by (2) is given by Sum. Thus we
may conclude that (X vY)v Z =X v (Y v Z), as needed. O

P3.1 |[A]€Ps for all M eC and A€ pfs(L)|

Proof. Assume M € C and A € pfs(L7). The base case is immediate
from the definitions. Assume for induction that |Al,|B| € Ps. We know
by [L3.4] that |A A B| = |A| A |B| and by [L3.5 that |A v B| = |A| v |B],
where both |A| A |B|,|A| v |B| € Ps by and It follows that
|A v B|,|A A B| € Ps. By induction, |A| € Ps for all Aepfs(£7). O

L3.12 H:(AvB)A(AvC)<Av (BACQO).

Proof. Let S = (S, u) where S = P({a,b,c}). Since z uy € S for all
x,y € S, we may conclude that S3 is a state space. Additionally, both
gus=sforall se S, and Sus =S for all s € S, and so S3 satisfies
Null State and Full State. Observe that xr vz =2z, z Uy =y Uz, and
U (yuz)=(xuy)u z for arbitrary x,y, z € S, and so Sz also satisfies
Idempotency, Commutativity, and Associativity. Thus Sz € M.

15
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Let M3 be an Sz-model where |pi|3 = {{a}}, |p2]s = {{b}}, and
|psls = {{c}}, and all other assignments are arbitrary singletons. Given
that S satisfies Idempotency, it follows immediately that |p;|3s = |p;|s for
all i € N, and so |p;|3 € Ps, for all i € N. Thus M3 e C.

It follows that |py v pa|3 = |p1]3 v |p2|s and [p1 v p3|3 = [p1|3 v |ps3
by and so it follows by both |p2 A p3l3 = |p2|s A |ps|s and
|(p1 v p2) A (1 Vv ps)ls = (Ip1ls v [p2l3) A (Ip1]s v [psls). Again by |L3.5]
we know that [p1 v (p2 A p3)ls = [p1ls v (Ip2ls A [pss).

By definition of v and A, we know that |p1|3Vv|p2|3 = {{a}, {b}, {a,b}},
Ip1ls v Ipsls = {{a},{c}, {a,c}}, and |pa|s A |ps[s = {{b,c}}, and so we
know (|p1|3 v |p2|3) A (|p1|3 v ‘p3‘3) = {{a}’ {a7 b}) {aa C}’ {b7 C}v {av b, C}}
and [p1[3 v (|p2[s A |psls) = {{a},{b, c}, {a,b,c}}. We may then observe
that (|p1ls v |p2[s) A (Ip1ls v |psls) & Ip1ls v (Ip2ls A |psls). Given the
Unilateral Semantics, M3 & (p1 v p2) A (p1 v p3) <p1 v (p2 A p3),
and so e (AvB)A(AVvC)<Av (BnaCQ). O

L3.13 ¢ AA(Av B)<A.

Proof. Let M3 be as in|L3.12] Since |p1 v pa|s = |p1ls v |p2|s by
we know that |p1 A (p1 v p2)ls = |p1ls A (p1ls v |p2ls) by However,
|p1]3 Vv |p2ls = {{a}, {b}, {a,b}} where |p1]5 = {{a}}, and so it follows that
Ip1ls A (Ip1ls v [p2ls) = {{a}, {a,b}}. Since [pi|s A (Ip1ls v [p2ls) & [p1ls,
we know that M3 t p1 A (p1 v p2) <p1 by the Unilateral Semantics,
and so may conclude that ¢ A A (A v B) 9 A as desired. O

L3.14 HcAv(AAB)<A.

Proof. Let M3 be defined as in[L3.12] Thus |p1 A p2|3 = |p1l3 A [p2]3 by
and so [p1 v (p1 A p2)ls = [p1ls v (|p1]3 A |p2[3) by However,
[p1ls A |p2ls = {{a,b}}, and since |p1|s = {{a}}, we may conclude that
Ip1ls v (Ip1ls A [p2ls) = {{a}, {a,b}}. Thus |pi[s A ([p1ls v [p2ls) & [p1ls,
and so we know that M3 ¥ p1 v (p1 A p2) I p1 by the Unilateral
Semantics. Thus it follows that ¢ A v (A A B) < A as desired. O

L3.15 HcAA(Av B)~ A

Proof. Follows from [L3.13] O
L3.16 H#cAv(AAB)~A

Proof. Follows from [L3.14] O
L3.17 H#cAv (BAC)~(AvB)A(Av ).

Proof. Follows from [L3.12] O

L3.18 [X A (X vY)# X forsomeSeMand X,Y € Pg.|

Proof. Given|[L3.15] M # p1 A (p1 v p2) ~ p; for some M € Cg, and so
[p1 A (p1 v p2)| # |p1| by the Unilateral Semantics. Thus it follows

by and that [p1| A (Ip1] v [pa]) # [p1]. Since p1,ps € pfs(L7),
we know that |p1], |p2| € Ps by [P3.1] and so we may conclude the proof
by existentially generalising on |p1|, |p2| and S € M. O

16



§4 SOUNDNESS Benjamin Brast-McKie

L3.19 [ X v (X AY)# X for someSeMand X,Y € Pg.|

Proof. Given [L3.16} M t p1 v (p1 A p2) ~ p1 for some M € Cs, and so
[p1 v (p1 A p2)| # |p1| by the Unilateral Semantics. Thus it follows

by and that [p1[ v (Ip1| A [p2|) # [p1]. Since p1, p2 € pfs(L7),
we know that |pi],|p2| € Ps by [P3.1] and so we may conclude the proof

by existentially generalising on |p1|, |p2| and S € M. O

L3.20 ForallSeMand X, Y,U,VePs,if XSYandU <V, then X AUCY A V.

Proof. Let Se M and X,Y,U,V € Ps, and assume X €Y and U € V.
Choose some s € X vU. By Sum, se X U U (X AU). If se XU U,
thenseY uV,andsose Y uV u (X A V). If instead s € X A U, then
s =z *u for some z € X and v € U. It follows that t € Y and u € V,
andso s € Y AV. Thus s e Y UV U (Y A V) in either case, and so
seY vV by Sum. We may then conclude that X vU C Y v V. O

L3.21 Xv (Y AZ)#(XVvY)A(X v Z)forsomeSeMand X,Y,Z e Ps|

Proof. Given above, we know that there is some M € Cs where
M prv (p2 Aps) ~ (p1 Vv p2) A (p1 Vv p3), and so it follows from the
Unilateral Semantics that [py v (p2 A p3)| # |(p1 v p2) A (p1 Vv D3)|.
Tl (el ) ] 1) o 1 v i) oy B 5
Since p1,p2, p3 € pfs(L7), we know that |p1], |p2|, |ps| € Ps by [P3.1} and

so we may conclude the proof by existential generalisation. O

L322 (XA (Y VvZ)=(XAY)v(XAZ)forallSeMand X,Y,Z € Pgs|
Proof. Assume S € M and X,Y, Z € Ps. We may then reason as follows:

XA(YvZ) = XA[YUZuU(Y AZ)

= XAY)UXAZ)U[X A (Y A2)]

=3 XAY)UXAZD)U[(XAX)A (Y A2Z)]
=1 XAY)UXAZD)U[(XAY)A (X AZ)]
=5 (X AY)v(XAZ).

(2) follows from [L3.1] and
) by appeal to |L2.12| and
AZ). O

Whereas both (1) and (5) are given by Sum,
(3) holds by We may then justify (
Thus X A (Y v Z)= (X AY) v (X

4 |SOUNDNESS

Given the semantics above, we may now prove that UGSN is sound over C by
induction on the number of applications of the meta-rules as follows:

T1 (Soundness) If ¥ yasy @, then ¥ ¢ .

Proof. The proof goes by a routine induction, drawing on - in
addition to standard validities for propositional logic. O

It follows from [L3.15] -[L3.17] and Soundness that #Absl, #Abs2, and
#Dist are not theorems of UGSN. It remains to prove -
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L4.1

L4.2

L4.3

L4.4

L4.5

L4.6

L4.7

FEcA<dAv Band ¢ BJAv B.

Proof. Let M € C and A, B € pfs(L7). Thus |A v B| = |A| v |B| by
where |A| v |B| = |A| U |B| u|A A B| by Sum. It follows that
|Al € |A v B| and |B| € |A v BJ, and so both M = A< A v B and
M E B< A v B by the semantics. O

EcAAAAand B¢ AnA<A.

Proof. Let M € C and A € pfs(L7). By[L3.4) |[AA A| = |A| A|A|, where
|A| € Ps by [P3.1] and so |A| A |A| = |A] by Thus |A A A| = |A],
andso MEA<AAAand M= AAA<LA. O

FEcAAN(BAC)S(AAB)ACand =¢c (AAB)AC<IAAN(BAC).

Proof. Letting M e C and A, B,C € pfs(L™), it follows by that
|Al,|Bl,|C| € Ps. Thus we may argue as follows:

[AA(BAC) =1 [AlA(IB]AIC])
=2 (JA[A[B]) A |C]
=3 |[(AAB)AC|.

Whereas both (1) and (3) follow from [L3.4] (2) is given by [L3.8] Thus
[AAN(BAC) =[(AAB)ACl,andso M E AA(BAC)I(AAB)AC
and M (AAB)AC<AA(BAC). O

Ec AAB<BAA.

Proof. Letting M € C and A, B € pfs(£™), it follows by that
|Al,|B]| € Ps. Thus we may argue as follows:

[AnB| =1 [A|A|B]
=2 [B[ A 4]
=3 |B N A|

Whereas both (1) and (3) follow from [L3.4] ( 2 ) is given by Thus
|[AAB|=|BAAl,andso M= AAB<BA O

A<B,C<dDE=c ArC<BAD.

Proof. Assume M E A< B and M = C < D for some M € C and
A,B,C,D e pfs(L™). Thus |A| € |B]| and |C| < |D|, where we know by
[P3.1] that |A],|B|, |C|, |D| € Ps. By [(3:20} |A] » C| < |B| | D], and
so |[AAC|< |BAD|by|L3.4 Thus M= AAC<BAD. O

A<dB,BdCEcALC.
Proof. Assume M E A< B and M E B < C for some M € C and

A,B,C € pfs(L™). Thus |A| < |B| and |B| < |C], and so |A] < |C]. We
may then conclude that M = A < B. O

Fc AT,
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Proof. Let M € C and A € pfs(L£™). By[P3.1] |A| € Ps, and so |A] € S.

Thus, |A| < |T| since [T| =S, and so M= A T. O
L4.8 ¢S5l

Proof. Immediate from the semantics. O
L4.9 ¢ $V.

Proof. Immediate from the semantics. O

L4.10 Ee Ll AA<Aand = AL A A
Proof. Let M € C and A € p£s(L7). We may then argue as follows:

se|L A Al iff s=oxy for some y e |A]
(#) iff s=y for some y € |A]
iff selA|.

Given that (*) holds by Null State, it follows that |L A A| = |A|, and so
bothMELlLAA<Aand M=A<L A A O

L4.11 EcVAA<Vand = VIV A A
Proof. Let M e C and A € pfs(L£7). We may then argue as follows:

se|V A A| iff s=mnxyfor someye |A|
() iff 5= s
iff selV|.

Given that (*) holds by Full State, it follows that |V A A| = |V|, and so
both MEVAA<LIVand MEV IV A A O

L4.12 $A=c A< L.

Proof. Assume that M = $A for some M € C. It follows that |A| = {s}
for some s € S, where || = &, and so |A| &€ |L|. Thus M ¥ A< L, and
soMEALL. O

L4.13 A~ BEc$A < $B.

Proof. Let M € C and assume for contraposition that M E $4 and
M b $B. Tt follows that |A| = {s} for some s € S where |B| # {s},
and so |A| # |B|. Thus either |A| &€ |B]| or |B| & |A|, and so either
M A<LB or Mt B<B. We may then conclude that M £ A ~ B,
where the same holds if M ¥ $A4 and M &= $B. O

L4.14 $A4,$B ¢ $(A A B).

Proof. Assume M = $A and M = $B for some M € C. It follows that
|A| = {s} and |B| = {t} for some s,t € S, where we know by [L3.4] that
|[AAB|={xzxy:zel|A| and y € |B|}. Thus |A A B| = {s *t}, and so
M = $(A A B). O
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L4.15 $A,B<Ac (A<IB)v (B<L).

Proof. Let M € C, and assume M = $A4 and M & B < A. Tt follows
that |A| = {s} for some s € S, and |B| < |A|, and so |B| < {s}. Thus
either |B| = {s} or |B| = @, and so either |A| € |B| or |B| < |1|. In
either case, M = (A<4B)v (BJ1). O

L4.16 $A A<CvDEc(A<SC)v(A<ID)v (A<SC AD,).

Proof. Let M € C, and assume M E $4 and M = A< C v D. Thus
|A| = {s} for some s € S, and |A| < |C v D|, where we know by [L3.5|and
Sum that |C' v D| = |C| u|D|u|C A D|,and so s € |C|u |D|u|C A D|.
Given that |A| = {s}, either |A|] < |C] or |A| < |D| or |A] < |C A D],
and so M E AdCor ME AdDor M E A< C A D. Thus
ME(AQC)Vv(A<ID)v (A<SC A D). O

L4.17 T k¢ $p— [(p<A) — (p<dB)] where p € L does not occur in A, B
orany ye€I', then ' =¢ A< B.

Proof. Let p € L be an arbitrary sentence letter which does not occur in
A, B or any v € I'. Assume for contraposition that I' ¢ A < B. Thus
there is some M € C such that M = v for all y e I', but M ¥ A< B.
It follows that |A| € |B|, and so there is some s € |A| such that s ¢ |B|.
Let M, differ at most from M by setting |p|, = {s}. Given that p does
not occur in A or B, we may conclude that |A| = |A], and |B| = | By,
and so both |p|, € |A[, but |p|, € |B]. given the above. Thus M, & $p
where M,, Ep<Abut M, ¥ p<B,and so M, ¥ (p<A) - (p<B)
and M, ¥ $p — [(p < A) — (p < B)]. Since p does not occur in any
v eI, and M, differs from M at most in p, it follows that M, = ~ for
allyel. ThusI' e $p — [(p <L A) — (p < B)]. O

L4.18 D [(ALL)A(AIBAC) > [BpAaSgn(pIB)A(@IC)ApArqgIA)] ey
for distinct p, ¢ € I which do not occur in ¢, A, B or any v € I, then I' =¢ .

Proof. Choose some distinct p, g € L which do not occur in ¢, A, B or
any v € I', and assume I' F4¢ @ for contraposition. It follows that there is
some M € C where M =« for all v € T but M ¥ . Of course, either:
(a) ME (AQL)A(AIBAC);0or (b) ME (AL L) A(ASBAC).
Assume (b) to start. It follows that:

ME[ALLAAIBAC)] =>[SpAS8¢A(pIB)A(¢qIC) A (pAglA).

Given that M E v for all v € T', the antecedent of the claim to be
proven is false. Assume (a) instead: M = (A4 L) A (A< B A C). Thus
MEASLand MEA<SBAC, andso |[A| € @ and |[A| S |BAC|. It
follows that there is some a € |A|, where a € |B A C|, and so a = bx ¢
for some b € |B| and ¢ € |C|. Let M,, differ at most from M by setting
|ple. = {b} and |q|,, = {c¢}, and so M, = $p and M, = $q. Since p and ¢
do not occur in A, B, ¢ or any v € I', we know that M, ¥ ¢ and M, = vy
for all v € I". Additionally, |A| = |Aly, |B| = |Blu, and |C| = |C|,, and
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$0 |plu € |Blu and |qly € |Cly. Thus M, = p < B and M, = ¢<C.
Given we may argue as follows:

pAgle = {zxy:ze|pl, and y € |gl.}
= {bxc}
= {a}

Since a € |A| = |Aly, we know |p A |y € |Alu, and so My, =p A g A.
Thus My, =E$pASgA (p<IB) A (¢IC) A (pAg<A), and so trivially:

My E[(ALL)A(AIBAC) = [SparSqgn(pIB) A (gLC) A (pAgIA)]

Given that M, ¥ ¢ where M, = « for all v € T, it follows that the
antecedent of the claim to be proven is false. Thus the antecedent is false
whether M E (AQL)A(AIBAC)or ME(A4L)A(A<SBAC).
The claim to be proven then follows by discharge and contraposition. [

5 |COMPLETENESS

Let L1 be a language like £~ but with L™ = L U Q u W in place of . where
Q={¢ :ieN}and W = [ J{r;, s;}. Keeping the formation rules the same
€N

as before, let pfs(L™1) be the set of pfs recursively generated from Lt rather
than L, where wfs(L£") is then generated from pfs(L™) via atoms(L™) as
above. In defining Fyqgny, We may then permit instances of the axioms and
rules of inference included in UGSN to draw upon both pfs(£™) and wfs(L™T).
Whereas in §3|and §4| we were concerned to evaluate truth relative to models in
C, we must now extend consideration to all wfs(£™"). Letting M = (S, ,|- |
be a unilateral S-model of LT just in case S € M where S = (S, ) and |p| € Ps
for all p € L*, we may take C;f to be the class of all S-models of LT, where
CT = J{C¢ : S e M}. We are now in a position to prove that UGSN is
complete over C by first showing that UGSN is complete over C.

T2 (Completeness) 1If ¥ ¢ o, then ¥ ygsn @-

Proof. The proof that UGSN is complete over C goes by contraposition. Assume
for discharge that ¥ t£yasy 0 for ¥ U {8} < wfs(L7). In order to prove that
¥ tc 0, I will construct a Henkin model Mry, , where Mry , &= o for all 0 € X
but Mry , ¥ 6 for a carefully chosen set of wfss I's g € wfs(£"). With this
alm in mind, consider the following definitions:

Mazimality: T is mazimal iff for all p € wEs(L™1), either o € T or —p € T.
Consistency: T is consistent iff Vuesy =(71 A «.. A n) for any {v1,...,m} S T.

Saturated: T' is saturated iff for all A, B € pfs(L™), there is some ¢ € Q not
occurring in A or B where [(¢ < A) —» (¢<B)] - (A< B)eTl.

Conjunctive: T is conjunctive iff whenever A4 1 A< B A C €T, then there are
some X,Y € pfs(LT) where $X,8Y, X <B)Y <C, X AY <A€eTl.
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<-Consistent: T is J-consistent iff 1" is saturated, conjunctive, and consistent.

Given the definitions above and any ¥ u {0} < wfs(L™) where X tyqen 0, we
may construct a maximal <-consistent set I's, g, proving the following:
[L5.6F For all X U {0} S wEs(L), if T £yesy 0, then T's g € wEs(L1) is maximal
<-consistent where ¥ € I's; g but 6 ¢ I's 5.

Given any maximal <-consistent set I's, g, I will show how to construct a Henkin
model Mry, ,. Letting M be the L -reduct of M € C*, we may prove:

[L5.10k If T's ¢ is maximal <-consistent, then Mpy , € C*.
[L511k If M eC*, then M™ € C where M™ = ¢ iff M | ¢ for all p € wfs(L7).

P5.3F If X truesy 0 for ¥ U {0} < wEs(L7), then x € I's g iff Mp,, = x for all x € wfs(L7).

Given the assumption that X t£yeen 0 for X U {0} < wEs(L7), it follows by

5.6 that 'y g is maximal <-consistent where 3 < I's g but 6 ¢ I'sy. By
P5.1 Mr, o for all o € ¥ where Mp , ¥ 6. Given that Mrp, € C* by
L.5.10} it follows from [L5.11| that M%;e € C where /\/l%;e o iff Mrg, E o
for all p € wEs(L™). Thus M%; , = o for all 0 € ¥ where ./\/115)3Z , 7 0, and so
¥ ¢ 0. By discharge and contraposition, we may conclude that if ¥ =¢ 6 then
Y Fuasy 0. It remains to establish each of the results stated above. O

In what follows, I will prove a number of preliminary results, culminating
in proofs of the lemmas and propositions cited above.

L5.1 IfT Fyesy @ and I' Fygen —, then T is inconsistent.
Proof. Standard. O

L5.2 IfT is a maximal consistent subset of wfs(L£"), then for all ¢ € wfs(L"):
(a) ¢@eTlifand only if —p ¢ T
(b) T byesn @ if and only if ¢ € T
(¢) pvyelifandonlyif pel or ¢ el
(d) oatvelifandonlyif pel’ and ¢ eT.
Proof. Standard. O

L5.3 If X uY is inconsistent for Y # &, then X Fygsn —(71 A -+ A Y5) for
some {y1,..., 7} S Y.

Proof. Standard. 0

Given any set of sentences ¥ U {0} < wfs(L™) for which ¥ yqsn 0, we
may construct a maximal consistent set I's, y where ¥ < I's gy but 0 ¢ I's .
The construction will proceed in three stages. First we define a saturated set
As g where ¥ U {—0} < Ay g, showing that Ay g is consistent. We then move
to extend Ay g to a conjunctive set Qy 5, showing that {2y, ¢ is also consistent.
Lastly, we define a maximal consistent extension I's g of Ay g in the usual
manner. More specifically, consider the following definitions:
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a-Ordering: Let atoms(LT) = {«a; : i € N}.

a-Witnesses: 6; = [(¢f SA) — (¢f <B)] — (A< B) where ¢ is the lowest indexed

member of Q not occurring in A, B, or J; for any j < i.

Saturation: Let A, =¥ U {6}, Agjél =A% U {0n+1} U {8q41}, and Agp = UN AL .
ne

Given these definitions, we may move to establish the first consistency proof.

L5.4 Forall ¥ u {6} < wfs(L7), if ¥ tfyesn 6, then Ay g is consistent.

Proof. The proof goes by induction, showing that A% 4 is consistent
for all n € N. Let ¥ u {#} < wfs(L™) and assume for discharge that
¥ Huasy 0. Assume for reductio that A%,a is inconsistent. It follows that

¥ Fuesy —0 by contradicting the above. Thus AOE’Q is consistent
by reductio.
Assume for induction that A§, , is consistent. Assume for reductio

that Agfel is inconsistent. Since A;}l = A% g U {0nt1} U {8q5 41}, it
follows by that AR j Fuasy —(0n+1 A8y, 41). Consider the following:

£6 Fuass  —(0n41 A Sqp4)
Fuesy ~[([(@h1 2 A) = (an40 < B)] = [A<L B]) A $q;,44]
Fuasn _'$q:z+1 Vv ([(q,;rl JA) - (q’:LJrl AB)] A [A4B])
Fuasn ($q;+1 - [(Q:LH <A) — (q;+1 <1 B)]) A ($q:z+1 — [A4B])
Fuesy $qp41 — [A{ B]
Fuas $q7:+1 - [(q;+1 < A) - (q;;+1 g B)]
(%) Fuvesx ALB

*
Fuasw _‘$qn+1

The above follows by propositional logic with the exception of (x) which
follows by the SPG} Thus we may conclude that Af 5 Fyasy —$q5 1
where ¢ | is the Towest indexed member of Q not occurring in A, B, or

O for any m < n + 1. It follows by that Agﬂ[q*/q* | Fuasy 8¢,
n/dn+1

and so A’ZL,Q Fuesy —$¢;, since ¢, does not occur in A’ZL,Q. However,
by construction $q% € A%y, and so Af, Fuass $q¢r. Thus AL, is
inconsistent by contradicting the above. By reductio, A’ELBI is
consistent, and so Ay, ¢ is consistent by induction. O

Having proven that Ay g is consistent for any non-theorem 6, we may now
proceed to construct Qy g from Ay g as follows:

n~-Atoms: Let atoms” (L) ={A<JIBAC: A, B,Cepfs(LT)}.
B-Ordering: Let atoms” (L1) = {8; : i € N}.

B-Witnesses: w; = [SAA(AIBAC)] = [3rf A8sf A (rF IB) A (s SC) A (rf Asfr A
where 77 and s; are the lowest indexed member of W not occurring

in A, B,C, or w; for any j <.
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Completion: Let Q%ﬁ = As, ngral =Q%yu {wnt1}, and Q59 = U Q% -
neN

We may now move to show that {y, ¢ is also consistent.

L5.5 Forall ¥ u {0} € wfs(L™), if ¥ Fyasy 0, then Qy g is consistent.

Proof. Let & u {0} € wEs(L™) and assume for discharge that ¥ t£yasx 6.
It follows by that Ay ¢ is consistent, establishing the base case.
Assume for induction that QF, , is consistent. Assume for reductio that
Q%Y is inconsistent. Since Q&' = QF 5 U{wn 1}, it follows bythat
Qg,e Fuasy —Wn+1, and so ngo Fuasy —0 — —wpy1. By contraposition,
Q% g Fuasy Wnt1 — 6, and so QF 5 U {wnt1} Fuasy 0. Since 6 € wis(L7),
neither 7}, ; nor s}, occur in #. Additionally, W n Ay, 9 = @, and so
neither 7, nor s, are in Q3 ;. Since by construction 75, ,; and s},
are the lowest indexed member of W not occurring in w; for any j < 7,
we may conclude that neither r;_ ; nor s7 ., are in Q% 4. It follows from
Q% gu {wnt1} Fuasy O that Q% o Fuass 0 by ﬁ However, we also know
that —0 € As g S Oz, and so QF , Fuasy —0. Thus by 0, is
inconsistent, contradicting the above. By reductio, Q’Elﬁ)l is consistent,
and so {25 ¢ is consistent by induction. O

It remains to identify a maximal consistent extension of {2y, g. In particular,
consider the following Henkin construction:

©-Ordering: Let wEs(LT) = {¢, : n e N}
Foz,e = Qs

[+l _ {Fgﬁ Udpns1} i T U {pn+1} is consistent
20 =

ISy ui{—¢ni1} otherwise.

Tyo = [ JT%e

neN

We now move to show that I'y; y is maximal <-consistent and includes ¥ U {—6}.

L5.6 [For all ¥ U {6} € wfs(L™), if ¥ t£yesy 0, then I's g is maximal |
|<J-consistent where 2 € I's g but 0 ¢ I'y; .|

Proof. Let X u {6} < wfs(L™) and assume X £ygen 0 for discharge.
By 50 is consistent, and so I‘OE’Q is consistent. Assume for
induction that T'}; 4 is consistent. If I'f j U {¢n41} is consistent, then
1—‘%51 is consistent. Assume instead that I'f, j U {¥n+1} is inconsistent.
Thus I'fs y Fuasy ~¢n+1 follows by where Fg}l =Tspu{—vni1}
Assume for reductio that I‘g}l is inconsistent. Again by it follows
that Fgﬂ Fuesy ——@n+1, and so Fgﬂ is inconsistent by By
reductio, Fgfol is consistent. Thus I's; g is consistent by induction.

In order to show that I's ¢ is maximal, let ¢ € wfs(L") be arbitrary.
It follows that ¢ = ¢, for some n € N. Thus either I'y; j = Fgfel U {n}
or I'f p = I‘g_gl U {—py}, and so either ¢ € I'}, j or —p € I'}, 5. Since
1"72‘79 C I's 9 where ¢ was arbitrary, I's; ¢ is maximal.
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We next show that I's g is saturated. Let A, B € pfs(L£™). It follows
that A <<B = « for some « € atoms(L1). By construction, there is some
0 € Ax g where § = [(¢ < A) - (¢ < B)] - (A< B) and q is the lowest
indexed member of QQ not occurring in A or B. Since Ay 9 € Q59 S I'sp
and A, B € pfs(L~) were arbitrary, it follows that I's ¢ is saturated.

Lastly, we show that I's, ¢ is conjunctive. Assume for discharge that
$A, A9BAC €Ty y. It follows that SAA (A<B AC) eT's g by ,
and 80 I's g Fuesy $A A (A< B A C). We also know that A BAC = j;
for some f; € atoms” (L*). By construction, w; € Qx g  I's; g, where:

wi=[$AA(AIBAC) > [$r" A8 A (" IB) A (s*<IC) A (r* A s* DA

Thus it follows that I's g Fuygsy wi. Given the above, we may then
conclude that I's; g Fuasy $7* A 8s* A (1 IB) A (s* <IC) A (1" A s* < A).
By existentially generalising on r* and s*, there are some X,Y € pfs(L™)
where I' Fygsy $X, T' Fuesy 8Y, I' Fyesy X OB, T Fyesn Y DO, as well
as ' Fygsy X AY <A, By 7 there are some X,Y € pfs(L1) where
$X,8Y, X <IB,Y<C, X AY JQAeT. Thus I'y  is conjunctive.
Having established that I's; 9 is maximal, consistent, saturated, and
conjunctive, we may conclude that I's, g is maximal <J-consistent as needed.
Moreover, Y u{—60} < I's g since Yu{—0} < A%,e CAyrg S Qs Ty
Thus by [L5.2p, 6 ¢ I's 9, and so we may conclude by discharge. O

We are now in a position to construct a Henkin model Mrp € C*, where T’
is any maximal <-consistent subset of wfs(L£"). Consider the following:

[-Class: [Alr ={X: A~ X €eT}.

I'-States: Sr = {[A]r : $A e T'}.

T-Fusion: [A]r * [B]r = [A A B]r.

I'-Valuation: |llr = {[A]r : $AeT and A<leT} for all [ € L+
T-Model: My = (S, *, |- |-

Given this construction, I will show that Mr is indeed a S-model of LT,
beginning with a few preliminary results.

L5.7 IfT is maximal <J-consistent and A, B € pfs(L"), then [A]p = [B]r iff A~ BeT.

Proof. Let A, B € pts(L"), and assume [A]r = [B]r. By [E1]we know
that —yesy B~ B, and so B~ BeT by . Thus B € [B]r. Given
the identity above, B € [A]r, and so A ~ B € T" by definition.

Assume instead that A ~ B € I'. We may then argue as follows:

Xe[Alr iff AxXel
iff Thvesy Ax X
(#) iff T hFuesn B X

iff B~Xel

iff X €[B]r.

25



§5 COMPLETENESS Benjamin Brast-McKie

The identities above all hold by definition and [L5.2p, with the exception
of (#) which follows from Thus [A]r = [B]r. Given the above, we
may conclude that [A]r = [B]r just in case A ~ BeT. O

L5.8 If I' is maximal <-consistent, then x » y € St for all z,y € Sr.

Proof. Assume that I" is maximal <l-consistent. In order to show that
* is well-defined over Sr, let a1, as,b1,by € S, and assume that both
a1 = ag and b1 = b2. By deﬁnition, a); = [Al]F; a9 = [AQ]F7 b1 = [Bl]F;
and by = [Bs]|r for some Ay, As, By, B € pfs(L™). Thus it follows that
[Al]]_" = [AQ]F and [BI]F = [BQ]F, and so Al X A2 eI’ and Bl X BQ el
by [L5.7] By [GAS8| we know that I' -ycen A1 A By ~ Ay A By, and
so Ay A By ~ Ay A By € T by [L5.2b. Again by we know that
[Al AN Bl]p = [Ag AN BQ]F, and so [Al]p * [Bl]p = [AQ]F * [BQ]F by
definition. Thus a; * by = ag * by, and so * is well-defined.

Let z,y € Sr by arbitrary. It follows that © = [A]r where $A4 € T,
and similarly y = [B]r where $B € I'. Thus I' -ygsn $(A A B) follows
from and so $(A A B) € I' by [L5.2b. We may then conclude that
[A A B]r € Sr. However, [A A B]r = [A]r * [B]r, and so z xy € Sr.
Thus we may conclude that x « y € Sr for all z,y € Sr. O

L5.9 If I is maximal <-consistent, then Mrp € C*.

Proof. Assume T' is maximal <-consistent. It follows by that
(S, *) is a state space. We must show that {(St,*) € M by satisfying
Null State, Full State, Idempotency, Commutativity, and Associativity.
Observe that Fygsy $4L and yesne $V follow from and
respectively. Thus I' Fygsy $L and T’ —yeen $V, and so $L,8V € T by
IL5.2b. By I'-States, both [L]r, [V]r € Sr. Letting x € Sr, it follows by
I-States that z = [A]r for some A € pfs(Lt) where $A4 € T, and so:

[L]r >z [£]r *[A]r Vlrxz = [Vlr+[A]lr
= [:L N A]F = [V N A]F
() = [{lr 1 = M

The identities above hold by definition or assumption with the exception
of (f) and (f) which follow by from and respectively. Since
x € St was arbitrary, we may conclude that there is some o € ST where
oxx = x for all x € St, and some = € S where » x z = » for all x € Sr.
Thus (Sr, ) satisfies both Null State and Full State.

Letting = € Sp. It follows that z = [A]r for some A € pfs(LT).
Recall that T' -yegsn A A A~ A by[E4] and so AA A~ A€eT by[L5.2p.
Thus [A A A]r = [A]r by and so [A]r * [A]r = [A]r. Equivalently,
x*x = x. Since x € Sy was arbitrary, (Sr, *) satisfies Idempotency.

Let z,y € Sp. It follows that x = [A]r and y = [B]r for some
A, B e pfs(LT). Recall that I' yesn A A B~ B A A by [E10] and so
AANB~BAAel by[L5.2b. Thus [A A B]r = [B A A]r by [L5.7 By
definition, [A]r * [B]r = [B]r *[A]r, and so z»y = y*x. Since z,y € Sp
were arbitrary, it follows that (Sr, ) satisfies Commutativity.
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Let z,y,z € Sp. Thus « = [A]r, y = [B]r, and z = [C]r for some
A,B,C € pfs(LT). Recall that I’ Fygsx AA (BAC) ~ (AAB)AC

by [E12] and so A A (B AC) ~ (AAB)AC el by[L5.2p. Thus
[AA(BAC)|r=[(AAB)AC]rby Consider the following:

zx(yxz) = [Alr*([Blr*[C]r)
[AA(BAQO)p
(x) = [(AAB)AC]r
= ([A]r *[B]r) * [C]r.
= (z*xy)*z2.

The identities above all follow by definition or assumption with the
exception of (#) which was already established. Since x,y, z € Sr were
arbitrary, {St, ») satisfies Associativity as desired.

Given the results above, (Sr, xy € M. We now show that |p|r € Ps,.
for all p e L*. Letting p € L™, we know that |p|r < Sr, and so |p|r < |p|r.
In order to establish the converse inclusion, let s € |p|r. It follows that
s = x »y for some x,y € |p|r, and so x = [X]r and y = [YV]r for some
X,Y e pfs(L") where both $X,8Y € and X <p,Y dpeT. By
Iyesy (X AY), and so $(X AY) e by . Since we also know
that T Fyesy X A Y <p A p by [GASB] it follows that T’ ey X AY <p
by [GA4] Again by[L5.2b, X AY <peT, and so [X A Y]r € |p|r by
I'-Valuation. By definition, [X A Y]r = [X]r = [Y]r. It follows that
xxy € |p|r, and so s € |p|r. Since s € |p|r was arbitrary, |p|r < [p|r.
Given the above, |p|r = |p|r, and so |p|r € Ps,. where St = {(Sr, *). Since
p € LT was arbitrary and {(Sr,*y € M, and so Mr € C*. O

L5.10 [If I is maximal <-consistent, then for all B € pfs(L™)
Blr = {[A]r :$A el and A Bel}]

Proof. Assuming that T' is maximal <-consistent, the proof proceeds
by induction on complexity. Assume to start that B € pfs(L*1) where
comp(B) = 0. It follows that either: (1) B=1; (2) B=1;(3) B=T,;
(4) B =V;or (5) B = p for some p € L. Since (5) is given immediately
by I'-Valuation, we may restrict consideration to (1) — (4).

Case 1: Assume B = L. We know that |L|r = {0}, where sy 3L
by [VE1] and +yaen L+ < L by [ET] and so both $L e ' and L <L €T by
L5.2b. Since o = [L]p, it follows that o€ {[A]r : $AeT and AJL eT}.
Let z € {[A]r : $A e T and A< L e T'}. By definition, = [A]r for some
A € pfs(LT) where both $A e T and A< L eT. Thus ' byesy AL L
and T Fygey (L < A) v (A< 1) follow by and respectively.
It follows by [L5.2]that A< L ¢ I and either L <AeT or AL eT,
and so L < A e I'. Having already shown that A <L €T, it follows by
that A ~ L €T, and so [A]r = [L]r by [L5.7] Thus z = o, and
so {[A]r :$4 €T and A< L €T} = {o} since x was arbitrary. Given the
above, |L|r = {[A]r : $4A €T and A < L € T'} as desired.

Case 2: Assuming B = 1, it follows that |L|p = @. Assume for
reducto that there is some z € {[A]r : $4 €T and A < L € T'}. Thus
x = [A]r for some A € pfs(Lt) where $4 € T and A< L e I'. It
follows that T Fygey AL L by andso A< 1 ¢T by Thus
{[Alr: $A €T and A< 1 e T'} = & by reductio, and so we may conclude
that |L|r = {[A]r:$4A€eT and AQ L eT}.
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Case 8: Assume B = 7. Thus |T|r = Sr. Letting s € Sr, it follows
that s = [A]r for some A € pfs(L*) where $A4 € I'. By[VF7} oy AT,
and so AT €T by [L5.2p. Thus s € {[A]r:$4 €T and AT €T}
Since s € Sp was arbitrary, {{A]r : $A el and AJIT eT'} = Sp. It
follows that |T|r = {[A]r : $4 € T and A < T € T'} by the above.

Case 4: Assuming B =V, it follows that |V|r = {=}, where Fyqgn $V
by [VF1] and tyesy ¥V <V by [E1] and so both $V e I and V<V eT by
IL5.2b. Since = = [V]r, we know that = € {[A]r: $A e and A<V eT}.
Let 2 € {[A]r : $A €T and A4V eT'}. By definition, x = [A]r for some
A € pfs(LT) where both $A €T and A<V eT'. Thus I fygey AL L
and T’ Fyesn (V< A) v (A L) follow by and respectively.
It follows by [L5.2]that A < L ¢ I' and either VI AeT or AL €T,
and so V < A € I". Having already shown that A <V eI, it follows by
that A~V eT, and so [A]r = [V]r by [L5.7 Thus z = =, and
so {[A]r : $4A €T and A<QV e T'} = {u} since x was arbitrary. Given the
above, [V|r = {[A]r: $4e T and AV eT}.

Having established the base cases, we may assume for induction that
|Blr = {[A]lr : 84 € T and A4 B € I'} for all B € pfs(L") such that
comp(B) < n. Letting B € pfs(L") be such that comp(B) = n, it follows
that either B =C A D or B =C v D. Consider the following:

Case 1: Assume B = C A D. Since both comp(C'), comp(D) < n, we
know by hypothesis that |C|r = {[A]r : $4 € T and A < C € T'} and
|Dir = {[A]r : $4 €T and A < D eT}. Consider the following:

se|C A Dlp iff Mp,sl-C A D
iff s = c*d for some c¢,d where Mrp,c - C and Mrp,d I+ D
iff s =cxd for some ce€ |C|r and d € |D|r
iff s=c*dforsomece{[X]r:$X el and X <C eT}
andde{[Y]r:$Y eT and Y < DeT}
iff s=[X]r*[Y]r for some X,Y € pfs(L") such that $X,$Y e '
where both X <C, Y <DeTl
(t) iff s=[X AY]r such that (X AY) el where X AY <C ADel
(1) iff se{[Z]r:$Z €T and ZAC A DeT}. [A]

The biconditionals above hold by definition or assumption with the
exception of (f) and (f). Starting with (), assume that s = [X]r * [Y]r
for some X and Y such that $X,$Y € I’ where X JC el and Y <D e T.
It follows by that T’ Fygey $(X A Y), and so $(X A Y) € T by
[L5.2b. We also know that I' Fyesy X A Y <C A D by and so
X AY JC A DeT by[L5.2b. Additionally, it follows that s = [X A Y]
by I'-Fusion. Altogether, s = [X A Y]r such that $(X A Y) € " where
XAYLCAD eT'. Existentially, generalising on X AY, we may conclude
that there is some Z € pfs(L™') such that s = [Z]r where $Z € I and
Z<ACaADel,andsose{[Z]p:$ZeT and Z<IC A DeT}.
Assume instead that s € {[Z]r : $Z €T and Z < C A D € T}, and
so for some Z € pfs(L"), s = [Z]r where $Z €T and Z I C A D €T.
Since I' is <-consistent, we know I" is conjunctive, and so there are some
X,Y € pfs(L") where $X,8Y, X A C, Y I D, X AY < Z € T'. Thus

I tuesw X AY 9C A D by[GAS| and T ygen $(X A Y) by [SP3] We
may then conclude that I' Fyeen (ZIX AY) v (X AY Q1) by
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and so either Z<IX AY el or X AY <1 el by[L5.2] We also know
that (X AY) Fyesn X AY 4L by and so I bygsy X A Y 1.
Thus X AY <1 ¢ T by[L5.2] and so Z <X AY €T given the above.
Given that X A Y < Z €T, it follows that I' yeen Z2 & X A Y, and
so Z~XAY el by. Thus [Z]r = [X]r * [Y]r by
and so s = [X]r * [Y]r for some X and Y where $X,8Y € T" and
X 4C,Y < DeT since s = [Z]r. Together with the forward direction,
it follows that |[C A Djp = {[A]r : $4AeT and AJIC A DeT}.

Case 2: Assume B = C v D. Since both comp(C'), comp(D) < n, we
know by hypothesis that |C|r = {[A]r : $4 € T and A < C € T'} and
|Dlr = {[A]r : $4 €T and A< D eT}. Consider the following:

s€|C v Dlp iff Mp,sl-C v D
iff Mrpr,sl-C, or Mr,sl+ D, or Mp,sl-C A D
iff s€|C|r, or se|D|r, or s€|C A D|p
iff se{[Alr:$AeT and AdCeT}orse{[Alr:34eTl and AdDeT}
orse{[Alr:$4eT and ASC A DeT}
iff s =[A]r for some A € pfs(L') where $4 € I' and
and either AX<Cel or A Delor ASC ADEeT

(%) iff s=[A]r for some A€ pfs(L') where $4e T and AJC v DeTl

iff se{[Alr:$4AeT and AQC v DeT}. [V]

All of the biconditionals above follow by assumption or definition, with
the exception of (#). For the forward direction, let s = [A]r for some
A € pfs(L™) where $4 € T" and either ASC eT or AID e T or
A<QC ADeT. Given[GAT] [GA2] and we know by [L5.2b that
CLdCvDel, DICvDeTlT and CAD<C v DeT. Thus it follows
by [GA9| that T Fyesx A< C v D in each case, and so A<IC v D el by
IL5.2b. Together with the above, s = [A]r for some A where $A € T" and
A<QC v D eT, thereby establishing the forward direction.

Assume instead that s = [A]r for some A where both $4 € I" and
AQC v DeTl. ThusT Fyesw (A<SC) v (AL D) v (A<SC A D) follows
by [SP5| and so either A< C eI, AADeTl,or ASC A DeT by
L5.2| Thus it follows that s = [A]p for some A where $A € I' and either
AQCeTl, AdDeTl,or AJC A D eT. Together with the above, it
follows that |C'v Djp = {[A]r : $4AeT" and A C v DeT}.

Given the cases proven above, it follows by induction on complexity
that |Blr = {[A]r : $4 €T and A< B €T} for all B € pfs(L™). O

It remains to show that every model M € C* of the expanded language
L* has a reduct M™ € C such that M™ = ¢ iff M = ¢ for all ¢ € wEs(L7).
Given any S-model M = (S,*,|-|)e CT, consider the following:

Restriction: Let | -|? : L — Pgs where [p|™ = |p| for all p € L.

R-Map: Let M™ = (S, |- |?*) where M =(S,| |,|- [y eC™.

The following lemma proves that M™ € C for any M € C*, where M™ makes
the same wfs of L™ true as M.

29



§5 COMPLETENESS Benjamin Brast-McKie

L5.11 [If M eCt, then M™ € C where M™ = ¢ iff M E ¢ for all g € wfs(L7).|

Proof. Let M € C*. By definition, M = (S, *,| - |) where {(S,*) € M
and |p;|, |qil, |ri|, |si| € Ps for all i € N. Thus M* = (S, *,| - |) where
(S,*ye M and |p;| € Ps for all i € N, and so M™ € C.

By construction, |p;|™ = |p;| for all p; € L. Thus it follows by two
routine induction proofs that: (1) |A[™ = |A| for all A € pfs(£7); and
(2) M™ =  just in case M = ¢ for all p € wfs(L™) as desired. O

L5.12 A<QBeTlsyiff Mry, = A<IB forall A,Be pfs(L™).

Proof. Let A, B € pfs(L*), and assume A I B € I's . Let s € |Alry,.
By s = [X]ry, where $X € 'y and X 94 A € 'y, and so
I'spFuess X < B and X < B €'y gy by [GA9|and [L5.2pb, respectively.
Given that $X € I's g, it follows that [X]r, , € |B|ry , by [L5.10} and so
5 € |Blry,. Thus |Alr,, € |B|rg,, and so Mry , = A< B. It follows
that if A< B elsy, then Mr, , = A4B.

Assume instead that A < B ¢ Iy g. It follows that A B e I'y g and
I's0 Fuass A4 B by [£5.2k and [L5.2p, respectively. We also know that
A< Beatoms(L), and so A< B = q; for some i € N. By construction,
wi,$q; € ALy where w; = [(¢ 9 A) — (¢ < B)] - (A< B). Since
Aizﬂ C Ayg € Qung S sy, it follows that w;,$¢; € I's 9. We may
then conclude that I's g Fyesx [(¢: <A) — (¢ < B)] - (A< B), and
50 I's g Fuesy —[(¢s 9 A) — (g < B)] since I's g Fyesy AL B. Thus
s Fuasy (i JA) A (@i fB),andso ¢ JAeTl'sgand ¢; IB ¢ sy
by @ Since $¢; € 'z g by construction, we know that [g;]r, , € Sty ,.
Given that ¢; <A e I's g but ¢; < B ¢ I's g, it follows by that
[@i]rss € [Alry, but [gi]ry, ¢ |Blrs,, and so [Alr , & [Blry,. Thus
Mry, , ¥ AL B, and so if Mr,, F A< B, then A BeTlyy. We may
then conclude that A < B € I's ¢ just in case Mr, , = A< B. O

L5.13 $AeTlyy iff Mry, = $A for all A€ pfs(LT).

Proof. Let A € pfs(L"), and assume $4 € 'y 9. By Fuesy A <A,
and so A I Ael'sy by[L5.2b. Thus [A]r,, € |A|r,,, and so it follows
that [A]ry, € |Alry, by Now assume z € |A|r, ,. By L5.10|,
there is some X € pfs(L") such that z = [X]r, , where $X € I's g and
X <dAeTxy By I's g Fuesy (A< X) v (X <L), and so either
A < X e Fz)g or X < 1le ].—‘279 by Since $X € Fzyg, it follows
that s g Fuesy X €L by and so X < 1 ¢ I's g by Thus
A <X eIy given the disjunction above. Having already shown that
X <A eTyxy, it follows that I's g Fygsn X & A, andso X ~ Ae'sy
by [L5.2b. Thus [X]r, , = [A]ry, by [L5.7] and so = [A]r,,,. Since
x was arbitrary, |A|r, , = {[A]ry,}, and so Mr, , = $A. We may then
conclude that if $4 € I's g, then Mr, , = $A.

Assuming instead that Mr, , = $4, we know that [A|r,, = {z}
for some = € Sr, ,. By there is some X € pfs(L%) such that
r = [X]ry , where both $X € I's p and X IA € I's g. Since Fygsy X IX
by it follows that X <X €T by , and so x € |X|pE
Assume for reductio that A < X ¢ I'sng. It follows by that
Mrg, # A<D X, and so |Alrg , & |X|ry ,. Thus some y € |Alpy , where
y ¢ |X|ry,. Given that [Alr,, = {z}, we know that y = z, and so
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x ¢ |X|ry ,, contradicting the above. By reductio, A1 X € I's 9, and so
I's o Fues X ~ A given that X <A eT'sy. Since X ~ A by $X =S4
by we know I's g Fyesy $X = $A. Given that $X € I'y g, it follows
that I's g Fuesy $4, and so $4 € I's, p by . Thus if Mr, , = $4,
then $A € 'y, g, and so $A4 € I's g just in case Mrg , = $A. O

P5.1 |If Y Huasy 8 for £ U {0} < wEs(L7), then x € 'y iff Mpy , = x for all x € wfs(ﬁ*).|

Proof. Let ¥ u {0} < wfs(L™) and assume ¥ fyeey 6. Thus I's g is
maximal <-consistent. Assuming comp™(x) = 0, either x = A< B or
X = $A for some A, Bepfs(LT). If y = A< B, then A< B €Ty just
in case Mry , = A<B by and so x € I's; g just in case Mry,, = x.
If instead x = $A, then $A € I's y just in case Mr, , = $A by
and so x € I's g just in case Mry, F x. Thus x € I's y just in case
Moy, = x for any x € wEs(L") where comp™ (x) = 0. By induction we
may show for all y € wfs(L™") that x € I's g just in case Mr, , = x. O

6 |INFINITE FUSION

Given any mereological state space (S, *) € M and nonempty finite X < S,
there is a unique fusion of the states which belong to X. However, if S is infinite,
we may also consider the fusion of infinite subsets of X € S. Accordingly, I
will restrict attention to the class of state spaces which is closed under both
finite and infinite fusion. More specifically, let an infinite state space be any
ordered pair (S, | |) where S is a set closed under the fusion operator | | which
maps subsets of S to members of S, where | |@ = o is the designated null
state, and | | S = = is the designated full state. An infinite state space {S,| |
is mereological just in case it also satisfies the following;:

Collapse: | |{s} = s for all se S.

Associativity: | [{|_|E; :i€ I} = |U{E; : i€ I} where I indexes each E; SE
Let My, be the class of all infinite mereological state spaces. Now consider:

oo-Closure: [X]|={]Y:9#Y < X}.

Sy -Propositions: PE ={X < S: X = [X]}.
Given any infinite state space S € My, where S = {(S,| |), an infinite unilateral
S-model M of L™ is any ordered triple M = (S| |,| - |) where |p| € PZ for all

p € L. Let CZ be the class of infinite S-models, and C* = | J{CS : S € M}. We
may then make the following amendment to the Unilateral Pre-Semantics:

(A) M,sI-AA B iff s=]|]{d,t} where M,d - A and M,t I+ B.

15 1 will let context determine which definition of associativity is intended.
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With the exception of the clause given above, the definition of exact verification
I is otherwise unchanged. As before, we may extend the domain of | - |:

Infinitary Valuation: se [A] iff M,s |- A.

Given this definition, the Unilateral Semantics may be preserved, thereby
defining =. As before, I ¢ @ just in case for all M € C%, if M = ~ for all
v €T, then M [ ¢, where a wfs ¢ is C*-valid just in case Ecx @.

In the space of propositions Ps was shown to be closed under the
operators A and v. We may now show that the space of infinite propositions
PZ is closed under the infinitary analogues which we may define as follows:

Cartesian Product: Let II{X; : i € I} be the set of functions f : I — | J{X; : i€ I}
such that f(i) € X; for all i € I.

Infinite Product: Let N{X;:ie I} ={{f(i):iel}: fell{X;:i€el}}.
Infinite Sum: Let \/{X;:ie I} =[U{X;:ie I}

Given any S € M and indexed family of propositions {X; : i € I'} € PZ, both:

L6.4 A{X;:iel}ePg. C6.5 \/{X,:iel}eP%.

Whereas Ps was only shown to be closed under finitary produce and sum, the
results above prove that P¥ is closed under infinite product and sum.

We may then define finitary analogues of infinite product and sum by letting
XAY = A{X,Y}and X vY = \/{X,Y}. Given any S € My, it follows
from [L6.6| and [L6.7| that AL = (PZ, A, v, T,L,V, L) is an algebra with the
same signature as A,-. Moreover, we may show that for any M e Cg, the
valuation function |- |: Ay~ — AZ is a L~-homomorphism:

[L6.91 |A A B|=|A| A|B|. P61 |A|eP¥%.
L6.10 |Av B|=|A|v|B|

Instead of forming a lattice, Ag may be re-described as a pre-bilattice consisting
of two complete latticesm In particular, we may let BE = (Ps, <, o) where <
is subset inclusion, and o< is defined by means of the following:

Parthood: = = y iff | [{z,y} =v.

Subsumption: X » Y iff for all y € Y, there is some x € X where x C y.

16 1n bilattices are defined in terms of pre-bilattices. See also |Ginsberg] (1988]), [Fitting
(1991} 2002), and |Arieli and Avron| (1996). |[Fine| (2017b) also draws this connection.
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Subservience: X <Y iff xxyeY forallze X and y € YE

Containment: X oY iff X » Y and X « Y.

We may then prove that for any indexed family of sets {X; : i € I} < P&, both:

[L6.6] A{X;:iel}=1ub*{X;:i€el}.
VA{X;:iel} =1ub<{X, i€}

Together with and it follows from the above that both (P¥, oc) and
(PZ, <) are complete lattices. Accordingly, B = (P%, o, <) is a pre-bilattice,
paving the way for the introduction of negation in §7]

Given these results, we may extend the Soundness and Completeness results
proven above by restricting consideration to the class of models C defined
over the infinite state spaces in My,. In particular:

T3 (Infinite Fusion) X Ecw ¢ iff ¥ Fyasn p-

Proof. We begin by showing that there are two class functions § : C — C® and
B : C* — C which preserve logical consequence. More specifically:

P63k M E o iff MY = ¢ for all M e C and ¢ € wfs(L7).
P64 M, = ¢ iff M2 = ¢ for all M, € C* and ¢ € wfs(L7).

Given that 3 H¢ ¢, there is some M € C where M = o for all ¢ € 3 but
M . By MS € C® where M3 = ¢ for all 0 € ¥ but M3 i ¢, and so
3 Fewo . Thus by contraposition, if 3 Ecx ¢, then X =¢ . Assuming instead
3 Feo @, there is some M € C* where M = o for all 0 € 3 but M ¥ ¢. By
M%ECWhereM%baforallanbutM%bécp, and so X H¢ @.
Thus ¥ F¢ ¢, and so by contraposition, if X ¢ ¢, then 3 e« ¢. Together,
Y Eex ¢ iff ¥ =¢ ¢. By Theorem and Theorem [T2] we know that
YEc w iff 3 Fyasn g, and so X Eee @ iff X Fyasy @- ]

The remainder of the present section will be devoted to proving the results
above, many of which will play an important role in the following sections.

L6.1 Forany SeMgand X € S,ifx e X and | | X =y, then x = y.
Proof. Follows from Collapse and Associativity. O
L6.2 zZzforallSeMgand x e S.
Proof. Immediate from Collapse. O

L6.3 Forany Se Mg and z,y,z€ S,if t ©Ey and y E 2, then z & 2.

17 One could define X « Y as for all € X, there is some y € Y where z = 3. These
definitions are equivalent provided we require X,Y € P°. Compare [Fine| (2016} p. 207).
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Proof. Follows from Collapse and Associativity. O

L6.4 [A\{X;:iel}eP%forallSeMand {X;:i€l}eP?|

Proof. Let S € My, and Y € A{X;:i€ I}, whereY = {y; : je J}. By
definition, y; = | |{f;(¢) : i € I} where f; € II{X; : ¢ € I} for each j € J.
Letting z; = | |{f;(i) : j € J} for each i € I, it follows that z; € X; since
X; e PE. Thus | |{z :i€e I} e A{X;:ieI}. Wemay then observe that:
| fziviery = [ J{| (i) :je}riel}

= U@ jesyien

- Ut ien e
| [{| [{fi():ient:je
= |_|{yj 1jed}
- |_|y

Thus | |Y € A{X;:ie I}, andso [A{X;:iel}] < N{X;:i€l}
where the converse follows by Collapse. Thus A\{X; :ie I} eP%. O

(1) :
(1) :

(]

L6.5 |\/{X;:iel}eP% forallSeMand {X;:i€cl}ecP?|

Proof. Let S € My, and Y < \/{X; : i € I} be nonempty, setting
Y = {y; : j € J}. By definition, y; = | | Z; where Z; < | J{X; : i € I}
for each j € J. For each i € I, we may let z; = | || J{Z; n X, : j € J},
observing that x; € X; since X; € PZ. Thus | [{z; :ie I} e \/{X, :ie I}
We may then argue as follows:

| wizieny = | L JUZinXicietiieny
- UUUZ nxicjedyien
= JUlUZnXiziery:jeqy
= YUz ie s
= Uid%:ien
= |ty :ieny
- |_|y

Thus | |Y € V{X; : i€ I}, and so [\/{X; : i€ I}] € V{X;:i€el},
where the converse holds by Collapse. Thus A\{X, : i€ I} € P%. O

L6.6 |A{X;:iel}=1ub*{X,;: i€ I} where S€ My and {X;:i€e [} S P¥||

Proof. Assume S € My, and {X; : i € I} € PE, and let s € A{X;:i€I}.
It follows that s = | |{g(¢) : ¢ € I} for some ¢ : I — |J{X; : i € I} such
that g(i) € X; for all i € I. Choose some i € I. If follows that g(i) € X,
and so g(i) = s. Generalising on s, it follows that X; » A{X; : i€ I}.
Now choose some z € X; and z € Z. It follows that z = | [{f(i) : i € I}
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for some f : I — | J{X; : ¢ e I} such that f(i) € X, for all ¢ € I. Since
X, € P, we know that | |{z, f(¢)} € X;. Consider the definition:

iy ) fU) if j#i
7= {U{x,f(z)} otherwise.

It follows that | |{f'(¢) : i € I} € Z. We may then observe the following;:

| =2y = | J = | JFG) ae1py
| Ut {rG) g e 13}
| Utz £} S () 5 € T where j # i}}
| J{| [z, £G)} | J{f () 5 € I where j # i}}
LU e £33, {7 G) < 5 € T where j # i}}
| J{r'G) ety

Thus | |{z,2} € Z, and so X; « A{X; :i € I}. Together with the above
X; oo A{X; : i € I}. Generalising on 7 € I, we may conclude that
/A{X; : i€ I} is an upper bound of {X; : i € I} with respect to .

Let Z € P be an upper bound of {X; : ¢ € I} with respect to o.
Accordingly, X; oc Z for all ¢ € I, and so both X; » Z and X; « Z for
all i € I. Choose some z € Z. It follows that for each i € I, there is some
x; € X; where x; £ z, and so |_|{z;, 2z} = z for each i € I. Accordingly, we
may let f: I — | J{X;:i€ I} besuch that f(i) € X; for all ¢ € I where
| [{zi, 2} = 2. By definition, | [{f(i):i€ I} € A{X;:i¢€ I}. Consider:

L L@ i 13,23 L L@ e 1y Lz
= U@ ie (=)
= HUtr@),=:ieny
= LL[r@ 2y ieny
= |_|{z iel}

By definition, | [{f(i) : i€ I} E z, and so A{X; :i€ I} » Z as desired.
Choose instead some z € A{X; : i € I} and z € Z. It follows that
x = | [{h(?) : i € I}, where h(i) € X; for all i € I. Since X; « Z for all
i € I, we know that | |[{h(¢), 2z} € Z for all i € I, and so it follows that
LI{LKR(2),2} : i € I} € Z given that Z € P¥. Consider the following:

| |{e, 2} | J{_[tr(@) i e 13| =1
| UJtnG) i e 13, {21
| |UJttn(), 2} sie 13

| J{[_J{rG), 2} i e 13,

Thus | |{z, 2} € Z, and so A{X; :i € I} « Z. Together with the above,
N{Xi:iel} o Z, and so A{X;:i€ I} =1ub™{X,Y} as desired. [
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L6.7 [\/{X,;:i€l}=1ub={X,:i€ I} where S€ M, and {X, :i€ I} < P |

Proof. Assume S € My, and {X; :i e I} < PZ. Choose some i € I, and
x € X;. It follows that x € | J{X; : i € I}, and so | [{z} e [|J{X; : i € I}].
Thus z € \/{X; : i € I} by Collapse, and so X; <€ \/{X; : i € I}. Since
i € I was arbitrary, we may conclude that \/{X; : i € I} is an upper
bound of {X : i € I} with respect to <.

Let Z € PE be an upper bound of {X; : i € I} with respect to <.
Choose some z € \/{X; : i € I}. It follows that x = | |Y for some
nonempty Y < | J{X; : i € I}. Lettingy; =Y n X, for each ¢ € I, set
W ={]Y;: @ # Y;}. Thus for any w e W, we know that w = | |Y; for
some ¢ € I, where Y; € X;. Since X, € PZ for all ¢ € I, it follows that
w € X;, and so w € Z since Z is an upper bound of {X; : i € I'} with
respect to €. Thus W € Z, and so | |W € Z since Z € PE. However:

Lw = LYo =y}

- HUtvi:e =y
LUy nXicieny
| |y

Thus x € Z, and so \/{X; : i € I} € Z more generally. Given that Z
was an arbitrary upper bound of {X : i € I} with respect to S, we may
conclude that \/{X; : i € I} = 1ub< X, Y as needed. O

L6.8 UvV=UuVuUAaV)foralU,V ePg.

Proof. Similar to Sum. O

L6.9 |[AAB|=]|A] A|B|foral MeC” and A, B € pfs(L™),|

Proof. Similar to [L3.4 O

L6.10 [Av B|=|A|v |B]forall MeC” and A, B

Proof. Similar to[L3.5 O

P6.1 ||A| € PZ for all M € C¥ and A € pfs(L™)]

Proof. Assume M € C*. By definition, |p;| € P for every p; € L, where
le] € PZ for all e € E. Assume for induction that |A|,|B| € PE. We know
that |A A B| = |A| A |B| by [L6.9] and |A v B| = |A| v |B| by [L6.10]
and so both [A| A |B|,|A| v |B| € P by [L6.6] and [L6.7] It follows by
induction that |A| € Ps for all A € pfs(L7). O

L6.11 X ALl =X forall Se My and X € PZ.
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Proof. Let S € M, and X € PZ. Consider the following biconditionals:
seX Al iff s:|_|{x,u} for some z € X
iff s= |_|{|_|{x},|_|®} for some x € X
iff s= UU{{m},@} for some x € X
iff s= |_|{x} for some x € X
iff seX.
The above hold by Collapse and Associativity, and so X A L =X. O

16.12 [Xv I =X forall S€ M, and X € P%

Proof. Let S€ My, and X e PZ. By[L6.8) X v L =X v @ U (X A D).
Since @ A X = @, it follows that X v @ = X. 0

L6.13 (X Ao =0 forall § € My, and X € P |

Proof. Immediate from Infinite Product. O

L6.14 [ X v §S=Sforall SeMyand X € PZ |

Proof. Let S €My, and X € PZ. By[L6.8) X v S =X uSuU (X A S).
Since X, S € PZ, it follows by [L6.4]that X A S € P¥,s0 X A S < 5. Of
course, we also know that X € S, andso Su X u (S A X) = S. Thus
we may conclude that S v X = X a needed. O

L6.15 (XAY)v(XAZ)Sc XA(YvZ)forall S§eMy and X,Y, Z € Pso.
In order to define the function §, we introduce the following definitions

where § = (S, ) is an arbitrary mereological state space in M:

Ideal: X < S is an ideal in (S, *) iff all ,y are such that z,y € X just in case z xy € X.
S-Ideals: Let Is be the set of all ideals in S.
X-Ideal: Let idealg(X)=(|{Y els: X =Y}
Parts: Let partsg(z) ={ye S:y*z =z}
We may now prove the following lemmas for an arbitrary state space S € M:

L6.16 If X © S, then ideals(X) € Is.

Proof. Let S € M where § = (S,*), and choose some J < Is. We
may then let x,y € idealg(X), choosing some Y € Ig where X < Y.
Thus z,y € Y, and so x xy € Y. Generalising on Y, it follows that
xxy € ideals(X). Assume instead that z «y € ideals(X), choosing an
arbitrary Y € s where X € Y. It follows that x xy € Y, and so z,y € Y.
Thus z,y € ideals(X), and so ideals(X) € Is. O
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L6.17 Forall X,Y < S,if X €Y, then ideals(X) € idealgs(Y).

Proof. Let X,Y < S where X € Y, and assume Z € [s where Y < Z.
It follows that X € Z, andso {Zels: Y c Z} c{Zels: X < Z}.
Thus ({Z els : X € Z} < ({{Z € Is : Y < Z}, or equivalently
idealgs(X) < ideals(Y'). This concludes the proof. O

L6.18 If z € S, then partsg(z) = ideals({z}).

Proof. Let x € S, and assume y € partsg(z). It follows that y » z = x.
Choose an arbitrary Y € Is where {z} € Y. It follows that x € Y, and
sox+y €Y. Given that Y is an ideal, we know that =,y € Y, and
so y € Y. Since Y € Is where {x} € Y was arbitrary, it follows that
y € idealg({z}). Thus partsg(x) < ideals({z}) as desired.

In order to show that partsg(z) is an ideal, let y,z € partsg(z).
It follows that y xx = x and z*x = x, and so y * (2 xx) = z. By
Associativity, (y x z) *x = x, and so y » z € partsg(z). Assume instead
that yxz € partsg(x). It follows that (y*z)*x = x, and so both y*z = =
and z * x = x by Idempotency, Commutativity, and Associativity, and so
Y,z € partsg(x). Since y and z were arbitrary, partsg(x) € Ls.

It follows by Idempotency that x *x + = z, and so « € partsg(z).
Letting y € ideals({x}) be arbitrary, it follows from the above that
y € partsg(z) since partsg(zr) € Ls where {z} < partsg(z). Thus
ideals({z}) < partsg(x), and so partsg(z) = ideals({z}). O

L6.19 If z,y€ S, then partsg(z) U partsg(y) < partsg(z *y).

Proof. Assume z,y € S, and let z € partsg(z) U partsg(y). It follows
that either z € partsg(x) or z € partsg(y), and so zxx =z or 2%y = y.
In either case z % (x*y) = x xy, and so z € partsg(z * y). Thus we may
conclude that partsg(z) U partsg(y) € partsg(x * y). O

L6.20 For all z,y € S, if partsg(z) = partsg(y), then z = y.

Proof. Let z,y € S, and assume that partsg(z) = partsg(y). It follows
by Idempotency, x € partsg(z) and y € partsg(y), and so « € partsg(y)
and y € partsg(z). Thus xxy =y and y*z =z, and so z = y. O

L6.21 If X € S, then X € X C ideals(X).

Proof. Assume X € S, and let 2 € X. It follows that 2 * z € X, and so
x € X by Idempotency. Thus X < X.

Assume instead that x € X. It follows that & = yxz for some y, z € X.
Choose some Z € Ig where X € Z. Thus y,z € Z, and soyxz € Z.
Generalising on Z, y  z € ideals(X), and so X € ideals(X). O

L6.22 If X €lg, then idealg(X) = X.

Proof. Assume X € s, and let x € X. Choose an arbitrary Y € I
where X € Y. It follows that x € Y. Generalising on Y we know that
x € idealg(X), and so it follows that X € ideals(X).

Assume instead that z € ideals(X). It follows that z € Y for all
Y € Is where X € Y. In particular, z € X given that X € Is. Thus
ideals(X) € X, and so ideals(X) = X. O
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L6.23 If X < 9, then ideals(X) = | J{partsg(z): z € X}.

Proof. We begin by showing that | J{partsg(z) : z € X} € Is. Assume
y,z € | J{partsg(z) : € X}. Thus y € partsg(u) and z € partsg(v)
for some u,v € X, and so y*u = v and zxv = v. Since X is closed under
fusion, we know that u * v € X, and so (y * u) * (z xv) € X. However:

uxv = (y*u)
= (y*2)

Thus y * z € partsg(u*v) where uxv € X, and so we may conclude that
y*z €| J{partsg(z) : # € X}. In order to establish the converse, assume
that y » 2 € (J{partsg(z) : z € X}. Thus y » 2 € partsg(w) where
we X, and so (y*z) *w = w. As in it follows that y » w = w
and z * w = w, and so both y, z € partsg(w) where w € X. Thus both
y,z € | J{partsg(z) : ¥ € X}, and so | J{partsg(z) : z € X} € Ls.
Letting z € X be arbitrary, xxz € X, and sox € X and = € partsg(z).
Thus z € | J{partsg(z) : x € X}, and so X < | J{partsg(z):z e X}. It
follows that idealsX < ideals(| J{partsg(z):z € X}) by and
so ideals(| J{partsg(z) : z € X}) = [J{partsg(z) : x € X} given that
U{partsg(z) : z € X} € Is. Thus idealsX < | J{partsg(z):z € X}.
Assume instead that x € X. By idealg({z}) € ideals(X).

Thus partsg(z) € ideals(X) by [L6.18] Additionally, X < ideals(X)

by and so ideals(X) < idealg(ideals(X)) by Thus
partsg(z) € ideals(X) since idealgs(ideals(X)) = idealgs(X) by
Since z € X was arbitrary, | J{partsg(z) : 2 € X} € idealsX.
Together with the above, idealsX = | J{partsg(z):z € X}. O

« (ux)

L6.24 If X c S, then ideals(| J{partsg(z): z € X}) = | J{partsg(z) : z € X}.

Proof. We first show that ideals(| J{partsg(z) : z € X}) = ideals(X).
Choose some Y € Is where X € Y, and let y € | J{partsg(z) : v € X}. It
follows that y € partsg(z) for some z € X, and so y x z = z where z € Y.
Thus yxz € Y, and so y € Y. More generally, | J{partsg(z) :z€ X} C Y,
andsoY € {Y € Is : | J{partsg(x) : x € X} € Y}. Generalising on Y, we
know that {Y els: X €Y} < {Y e Is : | J{partsg(z) : z € X} € Y},
and so ({Y € Is : {partsg(z) ;e X} Y} (Y els: X Y}
Equivalently, ideals(| J{partsg(z) : x € X}) < idealgs(X).

Assume instead that z € X. By Idempotency, x € partsg(z), and
so z € | J{partsg(z) : x € X}. Thus X < | J{partsg(z) : z € X}, and
so idealg(X) < ideals(| J{partsg(z) : x € X}) by [L6.17} Given the
above, ideals(| J{partss(z) : v € X}) = ideals(X), and so by |L6.23}
ideals(|J{partsg(z) : z € X}) = [J{partsg(x) : € X}. O

Given any finite state space & € M, we may construct an infinite state
space Sy, = (Is,| |) where | | is defined as follows:
Infinite Fusion: | | X = ideals(|JX) for all X < Is.

As I will go on to show, S, € M, for all § € M, and so given the definition
above, Pg = {X < Is : X = [X]}, which I will write Pg for simplicity. We
may then define a function § : Ps — P¥ as below:
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Forward: §(X) = [{partsg(z): z € X}] for all X € Ps.

In what follows, I will extend § to a function which maps C into C*, where
the lemmas given below build towards the construction of an infinite model
MS € C® from any finite model M € C, culminating in the proof of

L6.25 | |Ue€elgs forall Uc Is.

Proof. Let U < I, and assume z,y € idealgs(| JU). Choose some
Z €1s where | JU < Z. Thus x,y € Z, and so z xy € Z. More generally,
x*y € idealg(| JU). Assume instead that z « y € ideals(|JU), letting
V els where | JU € V. Thus xxy € V, and so z,y € V. More generally,
z,y € ideals(|JU). Thus ideals(| JU) € Ls, and so | |U € Is. O

L6.26 | |[{z} =« for all z € Is.

Proof. Let x € Is. It follows that | |[{z} = ideals(|J{z}) = ideals(x),
O

and so | |{z} = = by [L6.22]
L6.27 | [{[Ui:iel} = | J{Ui:iel}ifU; Clsforalliel.

Proof. Assume U; < Is for all : € I. We first show that every Z € I is
such that | J{ideals(|JU;): i€ I} S Z just in case | J|J{U; : i € [} < Z.
Let Z € Is where | J{ideals(|JU;) : i € I} < Z, and choose some
ze JU{U; : i € I}. Thus z € | U, for some i € I. Since | JU; € S, we
know that | JU; € ideals(|JU;) by and so x € ideals(|JU;).
Thus = € | J{ideals(|JU;) :iel} < Z, and so |J|{U; : i€ I} < Z. By
discharge, if | J{ideals(|JU;) :ie€ I} < Z, then | JY{U;: i e I} < Z.

Assume | JJ{U; : i€ I} € Z, and let z € | J{ideals(YU;) : i € I}.
Thus z € ideals(| JU;) for some i € I, so x € | J{partsg(y) : y € JU:}
by It follows that x € partsg(y) for some y € |JU;, and so
x*y =y where y = a*b for some a,b € | JU;. Thus a,be |JJ{U; : i € I}.
By assumption, a,b € Z, and so axb € Z since Z € Ils. Thus y € Z,
and so x xy € Z, given the above. We may then conclude that z € Z,
and so | J{ideals(|U;) : i € I} < Z. We know by discharge that
if JWU{U: : @ eI} < Z, then | J{ideals(YU;) : i € I} < Z. Thus
U{ideals(|JU;) : i € I} € Z just in case | J|J{U; : i € I} < Z for all
Z € ls given that Z € [s was arbitrary. Put otherwise:

{Ze]ls:U{idealS(UUi):ieI}gZ} - {ZeHs:UU{Ui:ieI}gZ}.

By then taking the intersection of both sides of the identity above, we
may observe that the identities below follow from the definitions:

ideals(| J{ideals(| JUi):ieT}) = ideals(|J|JiUi:ieT})
| [ Juizieny = || Jwiiety.

Given this final identity, we may conclude the proof by generalising on
the family of sets U; < Is indexed by I. O

L6.28 Forall XY c g, if X €Y, then [X] < [Y].
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Proof. Let X,Y < Is where X € Y, and let « € [X]. Thus some Z € X
where x = | |Z, and so Z € Y. Thus z € [Y], and so [X] < [Y]. O

16.29 [[U]] = [U] for all U < Is.

Proof. Let U < Is, and assume u € [[U]]. It follows that u = | |V for
some V < [U]. Let V be indexed by I such that V' = {v; : i € I'}, and
choose some v; € V. Tt follows that v; = | |V; for some V; € U. Thus:

u = |_|V
= | [{[Jvi:ieny
= JUizien

The latter identity holds by Since V; € U for all i € I, we know
that (J{V; : i e I} € U, and so | ||J{V;i : i € I} € [U]. Thus u € [U].
Generalising on w, it follows that [[U]] € [U] as desired.

Assume instead that u € U. It follows that |_|[{u} € [U], and so u € [U]

by Thus U < [U], and so [U] < [[U]] by Together with
the above, [[U]] = [U] for all U C Is. O

L6.30 §(X)ePg forall X < S.

Proof. Let X < S, and € X. Thus partsg(z) = ideals({z}) by
and idealg({z}) € Is by More generally, partsg(z) € Is
for all z € X, and so {partsg(z): x € X} < Ls, where we know by [L6.29]
that [{partsg(z) : z € X}| = [[{partsg(z) : € X}||. By definition,
§(X) = [{partsg(x) : € X}], and so §(X) = [§(X)]. Thus §F(X) € PZ,
where generalising on X < S concludes the proof. O

L6.31 € X iff partsg(x) € [{partsg(y) : y € X}| for all z € S and X € Pg.

Proof. Let x € S and X € Ps where x € X. Of course, it follows that
partsg(z) € {partsg(z) : © € X}, where we know by definition that
| {partsg(z)} € [{partsg(x) : x € X}]|. Since = € S, it follows that

partsg(z) = ideals({z}) by [L6.18] and ideals({z}) € Is by [L6.16]

and so partsg(z) € Is. Thus | |{partsg(x)} = partsg(z) follows by
and so partsg(z) € [{partsg(z) : z € X}].

Assume instead that partsg(z) € [{partsg(y) : y € X}]. Thus there
issome Y C {partsg(y) : y € X} where partsg(z) = | |Y. By definition,
LY = ideals(|JY), and so partsg(z) = ideals(|JY). We may then
let Z ={ze X :partsg(z) € Y}, and so | JY = [ J{partsgs(y) : y € Z}.
Accordingly, partsg(z) = ideals(|J{partsg(y) : y € Z}), and so by
we know that partsg(z) = | J{partsg(y) : y € Z}. Of course,
x € partsg(z) by Idempotency, and so z € | J{partsg(y) : y € Z}. Thus
x = partsg(y) for some y € Z, and so z  y = y. Letting u € partsg(z),
it follows that u * z = z, and so we may reason as follows:

uxy = ux(wsy)
(ux )y
T *xy

=Y

41



66 INFINITE FUSION Benjamin Brast-McKie

Thus it follows that v € partsg(y). Generalising on u, it follows that
partsg(z) € partsg(y). However, given that y € Z, we also know that
partsg(y) < J{partsg(y) : y € Z} = partsg(z), from which it follows
that partsg(y) S partsg(x). Given the above, partsg(x) = partsg(y),
and so z = y by Thus we may conclude that = € Z.

Recall from above that Z = {z € X : partsg(z) € Y}. It follows that
Z < X, and so Z € X. However, we know by assumption that X € Pg,
and so X = X. Thus Z € X, and so z € X given the above. Thus z € X

just in case partsg(z) € [{partsg(y) : y € X}|. O
L6.32 XcYiff §(X)<cFY), X,Y €Ps.

Proof. Assume X < Y for some X,Y € Ps. We may then observe
that {partsg(z) : € X} < {partsg(y) : y € Y}, and so it follows
by [L6.28] that [{partsg(z) : € X}] < [{partsg(y) : y € Y}]. Thus
F(X) = ().

Assume X & Y instead, and so x ¢ Y for some z € X. Thus we

may conclude by [L6.31] that partsg(z) € [{partsg(y) : y € X}]| but
partsg(z) € [{partsg(y) : y € Y}]. It follows that F(X) &€ F(Y). O

L6.33 JF({z}) = {partsg(x)} for all z € S.

Proof. Let z € S, so §({z}) = [{partsg(z) : z € {z}}] = [{partsg(x)}],
where [{partss(2)}] = {U{partss(z)}} = {ideals(U{partss(z)})}.
Of course, {ideals(| J{partsg(z)})} = {ideals(partsg(x))}. By[L6.18
and [L6.16] we also know that partsg(z) € Is, and so it follows by [L6.22
that ideals(partsg(z)) = partsg(x). Thus §({z}) = {partsg(z)}. O

L6.34 F(X)AZ(Y)=F(X AY) forall X,Y e Ps.

Proof. Let X,Y € Ps, and assume Z € F(X)AF(Y). Thus Z = | {U,V}
for some U € F(X) and V € §(Y), and so Z = ideals(U u V). We also
know that U = | |[{partsg(x):z€ X'} and V = | |[{partsg(z): z €Y'}
for some X’ € X and Y’ € Y. If follows by definition that both:

U= idealS(U{partsS(x) cre X'},
V= idealg(U{partsS(m) czeY'}).

Given these identities, we may observe that the identities below follow by
definition or assumption with exception of (x) which is given by [L6.24

Z = ideals(UuV)
~ idealg[ideals(| [{partsg(z): z € X'}) U ideals(| J{partsg(z) : z € Y'})]
(x) = ideals[| J{partsg(x): e X'} u| Jipartsg(x) : w e V7}]
= ideals|| J{partsg(x) Upartsgs(y) iz e X',y e Y7}]
= Ll{partss(a:) uUpartsg(y) :re X ,yeY'}

Let z € partsg(x) U partsg(y) for some z € X’ and y € Y'. By [L6.19
z € partsg(z * y), where z € X and y € Y given that X’ € X = X
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and Y/ €Y =Y. Thus z € partsg(z +y) for z € X and y € Y, and so
z € {partsg(w) : w e X A Y}. Generalising on z, it follows that:

{partsg(z) Upartsg(y) :z € X,y e Y} C {partsg(w) :we X A Y},
U{partss(x) upartsg(y) :x e X,ye Y} e [{partsg(w) :we X A Y}

Given the above, Z € [{partsg(w) : w € X AY'}|. However, by definition,
[{partsg(w) :we X AY}| =F(X AY),and so Z € F(X AY). Thus it
follows that F(X) AF(Y) = F(X AY).

Assume instead that Z € §(X A Y). It follows that Z = | |J for
some J € {partsg(w) : w € X AY}. Thus there is some K € X A Y
where J = {partsg(w) : w € K}. Hence it follows that:

z = | |7
= U{partss(w) cwe K}
= idealg(U{partsS(w) cwe K})

() = U{partss(w):wef}
() = ideals(K)

Whereas (1) is given by [L6.24] (1) holds by [L6.23] where the remaining

identities follow from the above by definition. Consider the definitions:

X' ={zeX:IyeY wherez xy e K},
Y'={yeY :3xe X where x »y € K},

U= idealS(U{partsS(x) cxe X'},
V= idealg(U{partsS(y) cyeY'}).

We may then show that ideals(K) = ideals(U u V) where U € X and
VY. Let ke K. Since K € X A Y, we know that k = x x y where
reXandyeY, and so z € X' and y € Y'. Given that = € partsg(x)
and y € partsg(y) by Idempotency, both = € | J{partsg(z) : z € X'}
and y € | J{partsg(y) : y € Y'}. By z €U and y € V. Letting
Z € lsg where U UV < Z, it follows that z,y € Z, and so x xy € Z.
Generalising on Z, we may conclude that x x y € ideals(U u V), and
so k € ideals(U u V). Thus K < ideals(U u V), and so by
idealgs(K) € idealgs(ideals(U u V)). Since ideals(U u V) € Is by
L6.16| it follows that ideals(ideals(U u V)) = ideals(U u V) by
L6.22] and so idealg(K) < ideals(U u V) given the above.

In order to establish the converse inclusion, choose some W € Is
where K € W, and let w € U u V. Consider the following cases:

Case 1: Assume w € U. By U = U{partsg(z) : z € X'},
and so w € partsg(z) for some x € X'. It follows that w » = « where
x = ax b for some a,b € X’. Thus there are some u and v such that
axue K and bxve K, and so both axu,b*ve W given that K € W.
Since W € Is, both a,be W, and so a *b € W. Given the above, we may
conclude that w «x € W, and so w € W as desired. Case 2: Assume

weV. By V = J{partss(y) : y € Y’}, and so w € partsg(y)

for some y € Y’. It follows that w x y = y where y = ¢ x d for some
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¢,d € Y'. Thus there are some u and v such that cxu € K and d*v e K,
and so both ¢ xu,d x v € W given that K € W. Since W € Ig, both
c,d e W, and so ¢ xd € W. Given the above, we may conclude that
wxye W, and so w e W as desired.

Since w € W in both of the cases above, it follows that U v V € W,
andso {Wels: KWy {Wels:UuV < W} Thus we
know that ({{Wels: UuV c W} (\{{Wels: K< W}, and so
ideals(U u V) C idealgs(K) by definition. Together with the inclusion
given above, it follow that ideals(K) = ideals(U u V).

Thus we have Z = idealg(K) = ideals(U u V) = | |{U,V}. Since
X'c X and Y’ €Y, both {partsg(z): x € X'}  {partsg(z) : x € X}
and {partsg(y) : y € Y’} < {partsg(y) : y € Y}. We may then observe:

U= Ll{partss(x) cx € X'} € [{partsg(z) : z € X}| = F(X),
V =| |{partsgs(y) : y e Y’} € [{partsgs(y) 1 y € Y} = §(V).

Having shown that Z = | |{U,V} where U € §(X) and V € F(Y), it
follows that Z € F(X)AF(Y). Since Z € F(X AY) was arbitrary, it follows
that F(X AY) S FX) AFY),andso F(X) AFY)=FX AY). O

L6.35 F(X)vI(Y)=F(X vY)foral X,Y ePs.

Proof. Letting X,Y € Pg, the inclusions given on the left hold by Sum,
where the inclusions on the right follow by

X ¢ XvY F(X) ¢ (X vY)
Y ¢ XVvY FY) < FXvY)
XAY ¢ XvY FXAY) € F(XVY).

Since F(X AY) = F(X) AF(Y) by [L6.34] we may conclude from the
above that F(X) U F(Y) u (F(X) AF(Y)) € F(X vY). Thus by [L6.8]
we may conclude that §(X) v §(Y) < F(X vY).

Choose some z € X. Since {partsg(z)} S {partsg(x): z € X}, we
know by definiton that | |{partsg(z)} € F(X). We also know by
that partsg(z) € Ls, and so | |[{partsg(z)} = partsg(z) by
Thus partsg(z) € §(X), and so {partsg(z) : x € X} < F(X) follows by
generalising on « € X. By analogous arguments:

{partss(y) :yeY} < (V)
{partsg(z):2e X AY} < F(X AY).

However, F(X AY) = F(X) A F(Y) by [L6.34] and so it follows that:
{partsg(z) 1 2e X VY U (X AY)} S F(X)UF(Y) U (FX) AF(Y)).

Thus {partsg(z):z€ X v Y} < §F(X) v F(Y) by Sum and [L6.8] By
[{partsg(z): z€ X vY}]| € [§(X) vF(Y)], and so by definition
FXVY) < [F(X)vFY)] However, F(X)vF(Y) = [F(X)uF(Y)], and
s0 F(X vY) < [[F(X)uF(Y)]]. Since X,Y € Pg, we know by [L6.30| that
both §(X), (Y) € PZ, and so §(X),§(Y) < Is. Thus F(X)uF(Y) < Is,
and so [[F(X)uF(Y)]] = [F(X)uF(Y)] by[L6.29] We may then conclude
that F(X vY) c [F(X)uF )] = S( ) v§(Y), and so by the inclusion
established above, we know that F(X) v FY) =FX vY). O

44



56 INFINITE FUSION

Benjamin Brast-McKie

Given these results, we are now in a position to extend the mapping § from
propositions to models. In particular, consider the following:

§-Map: Let MS = (Is,| |,|-|¥) where M = (S, %,|-|>)eCand |- |5 =F(])-

I will then show that § : C — C® is a strong homomorphism with respect to
logical consequence. To begin with, consider the following lemmas.

L6.36 MS e (C® for all M eC.

Proof. Let M € Cs where S = {(S,*). By T = {s,| ]) is an
infinite state space, where Z € M, by [[6.26]and [L6.27] Letting p € L. be
arbitrary, we may then observe that |p| < S, and so §(|p|) € PZ by[L6.30]
Generalising on p € L, it follows that M% = (Is,| |,| - [¥) e C*. O

L6.37 |A|S = F(|A|) for all Aepfs(L7).

Proof. The proof goes by induction on complexity where the base case
is given by F-Map. Assume for induction that |A[S = F(|A]) for all
A € pfs(L7) where comp(A4) < n. Let A € pfs(A) with comp(4) = n.
It follows that either A = B A C or A = B v C, where in either case
|BI¥ = §(|B]) and |C[3 = §(|C]) by hypothesis.

Case 1: Assume A = B A C. We may then reason as follows:

se|BAC|S

iff MS,sl-BAC

iff s= |_|{a,b} where M% a |- B and MS,b |- C
iff s= |_|{a,b} where a € |B|® and be |C|¥

iff s= |_|{a,b} where a € F(|B]) and b € F(|C|)
iff s e3(Bl) A S(C)).

iff s € 3B A IC]).

iff seF(BAC)).

Whereas (1) follows by hypothesis, (2) is given by and (3) follows
from [L3.4l All of the other biconditionals are immediate from the
definitions. Thus |B A C|¥ = F(|B A C|) and so |A[|S = F(|A]).

Case 2: Assume B = C v C instead. Thus if follows that:

se|BvC[]®

(
(
(3
(
(

iff M, sI-BvC

iff M3, sI-FB, or MS,sI-C, or M3, sI-B A C
iff se|B|®, orse|C|%, orse|BAC|®

iff seF(B]), or seF(C|), or seF(|B A C|)

iff seF(Bl) vI(C]) v F(B]) A F(IC)))

iff se3(B[) v I(C]).
iff seF(B[v|C]).
iff seF(Bv ).

As above, (1) is given by hypothesis, whereas (2) follows by the argument

given in Case 1, (3) holds by (4) is given by [L6.35] and (5) follows
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from Since the other biconditionals all hold by definition, we may
conclude that |B v C|¥ = §(|B v C|) and so |A|¥ = F(|A]).

Since |A[¥ = F(]A]) holds in both of the cases above, we may conclude
by induction that |A|¥ = F(JA|) for all A € pfs(L™) as desired. O

P6.2 |A[S € P¥ for all M € C and A € pfs(L7).

Proof. Assume M € C. By |A] € Ps, and so |A| = S. Thus
F(|A]) € PZ by [L6.30| and so |A[S € P¥ follows by |L6.37 O

P6.3 M ¢ iff MY = o, for all M € C and ¢ € wEs(L™) |

Proof. Let M = (S, ,]|-|) for some M € Cs. The proof goes by induction
on the complexity. Assume ¢ € wfs(L£~) where comp®(¢) = 0. Thus
either ¢ = $A4 or ¢ = A < B for some A, B € pfs(L7).

Case ($): Assume ¢ = $A for A e pfs(L™). Thus |[A| € Ps by
and so s € |A| just in case partsg(s) € [{partsg(z) : = € |A|}] for any
s € S by [L6.31] Since F(|A|) = [{partsg(z) : = € |A]}] by definition,
and |A[¥ = F(|A]) by [L6.37, we may conclude the following:

se |A| iff partsg(s) e |AlS. (%)

Assume M E . It follows that M = $A, and so |A| = {a} for some
a€sS. By F({a}) = {partsg(a)}, and so |A]S = {partsg(a)}.
Thus M3 = $A, and so we may conclude that M¥ = ¢.

Assume MS E ¢ instead. Thus M? = $A, and so |A]S = {b} for
some b € [s. Since |A]S = [{partsg(z) : = € |A|}] by definition, we
may conclude that {b} = {| |V : @ # Y < {partsg(z) : = € |Al}}.
It follows that |A| # &, for otherwise {b} = &, and so there is some
x € |A|. In order to prove uniqueness, assume y € |A|. By (%), both
partsg(z), partsg(y) € |A[¥, and so partsg(z) = partsg(y) given that
|A]S = {b}. Thus z = y by and so every y € |A] is such that
xz =y. Thus |A| = {z}, and so M = $A. It follows that M k= ¢, and so
together with the above, M [ ¢ just in case M3 E ¢.

Case (Q): Assume ¢ = A< B for A, B € pfs(L™). By both
|Al,|B] € Ps, and so |A| € |B] just in case §(|A|) < F(|B]) by
By |A|S = F(JA|) and |B|¥ = F(|B|), and so we know:

Al < |B] iff |A]F < |BIS. (*)

Thus M = A < B just in case MS = A < B, or equivalently, M = ¢
just in case M? = ¢ as desired. Given the above, M E ¢ just in case
M3 E ¢ for all ¢ € wfs(L™) such that comp™(¢) = 0.

Since M agree M? on all atomic sentences of £, it follows by routine
induction that M & ¢ just in case M3 = ¢ for all € wfs(L£7). O

By F : C — C%® is a strong homomorphism with respect to . It
remains to construct a function B : C* — C with the same structure preserving
property. Given any M, € C* where M,, = {(S,| |, |- |.) let:

Backwards: B(X) = X for all X € PZ.
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B-Map: Let M2 = (S, *,|-|F) where M, = (S, ],||.)eC® and |-|® = B(| - |u)-

The following lemma proves that 9B preserves semantic entailment in evaluating
wfs of £~ at finite models in C rather than infinite models in C*.

L6.38 |A|2 = B(|A|,) for all M, € C* and A € pfs(L7).

Proof. The proof goes by induction on complexity where the base case
is given by B-Map. Assume for induction that |A|® = B(|A],) for all
A € pfs(L™) where comp(A4) < n. Let A € pfs(A) with comp(4) = n.
It follows that either A = B A C or A = B v C, where in either case
|B|Z = %B(|B|.) and |C|® = B(|C|.) by hypothesis.

Case 1: Assume A = B A C. We may then reason as follows:

se|BACIZ iff M2,sl-BAC
iff s =axbwhere M® a |- Band M2 b|-C
iff s=axbwhereac|B|® andbe|C|®
(x) iff s=a*b where a € B(|B|,) and b e B(|C|,)
iff s= |_|{a,b} where a € |B|,, and b€ |C|,
iff My,sl-BAC
iff s€|B A Cly.
Whereas (#) follows by hypothesis, all of the other biconditionals are
immediate from the definitions. Thus [BAC|Z = |BAC|, = B(|BACl.)

and so |A|Z = B(|A],) as desired.
Case 2: Assume B = C v C instead. Thus if follows that:

se|BvC|® iff M2 sI-BvC
iff M2 sI-B, or M2 s-C, or M2 s|- B AC
iff se|B|2, orse|C|®, orse|BAC|?

() iff s€B(|Blu), or s€ B(|C|y), or s€ B(|B A Cly)
iff My,sl-B, or My,sl-C, or My,sl-B AC
iff My,sl-BvC
iff se|Bv Cly.

As above, (*) is given by hypothesis, whereas the other biconditionals
follow by definition. Thus |B v C|2 = |B v C|, = B(|B v C|.) and so
|A|Z = B(|A|.). Since |A|Z = B(|A|,) holds in both of the cases above,
it follows by induction that |A|2 = B(|A],) for all A€ pfs(L7). O

P6.4 (M, ¢ iff M = o, for all M, € C* and ¢ € wfs(L). |

Proof. Assume M,, € C* and ¢ € wfs(L™). The proof goes by induction
on the complexity of ¢ € (L7). Assume to start that ¢ € wfs(L™)
where compt () = 0. Thus either ¢ = $A4 or ¢ = A < B for some
A, B € pfs(L7). I will consider these cases in order.

Case ($): Assume ¢ = $A for A € pfs(L£7). Since |A|Z = B(|A].)
by the[L6.38] where |A|, = B(|Al,) by B-Map, it follows that |4, = {s}
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for some s € S just in case |A|® = {s} for some s € S. Thus M, = $4
just in case MZ E $A, and so M, ¢ just in case M2 = .

Case (<): Assume ¢ = A< B for A, B € pfs(L£~). Thus by
both |A|2 = B(|A],) and |B|® = B(|B|.), where |A]l, = B(|A].)
and |Bl, = B(|B|.) by B-Map, we know |A|, < |B|, just in case
|A|Z < |B|2. Tt follows that M, = A < B just in case M2 = A < B,
and so we may conclude that M, = ¢ just in case M2 = ¢ as desired.

Given that M agree M® on all atomic sentences of £~, it follows by
a standard induction that M £ ¢ iff M® = ¢ for all p e wEs(L£7). O

7 |INEGATION

Recall that negation was excluded from the pfs of £7. I will now extend
the results proven above to a logic in which this simplification is dropped.
Accordingly, T will take ‘V’ and ‘L’ to abbreviate ‘=7 and ‘— 1’ respectively,
letting £ be the result of excluding V and L from the primitive symbols of £~
while including ‘—’. We may then amend the formation rules as follows:

(—) If Ais apfs of £, then —A is a pfs of L.

Let pfs™ (L) be the set of all pfss of £ once the clause for negation has been
added to the formation rules given above, replacing ‘L~ with ‘£’ throughout.
We may then let wfs™ (L) be the set of all wfss of £ generated recursively
from pfs™ (L) via atoms™ (L) in the same manner as before. In addition to the
axioms and rules of inference for UGSN, we may now include the following:

Negation Axioms

NA1 A<——A. NA2 ——A<A.
NA3 —AA—-B<d—(AvB). NA4 —(Av B)<d—AA—B.
NA5 —Av—B<d—(AADB). NA6 —(AAB)<d—Av —B.

Let ygg be the smallest relation closed under the axioms and rules given both
here and in A theorem of The Specific Logic of Unilateral Ground (UGS)
is any ¢ € wfs™ (L) where Fygs . We may then derive the following:

Negation Equivalences

[EI5] —AA—-B~—(Av B). A~ ——A
[E1I6]l —Av —B~ —(AA B).

It remains to adapt the semantics to accommodate negation. In particular,
every proposition will be shown to have a unique inverse.

Following |Fine (2017blic), I will take propositions to be ordered pairs of
sets of states, where the states belonging to the first set may be referred to as
the exact verifiers and the second set as the exact falsifiers. More specifically,
for any S € M,, we may define the space of bilateral propositions as follows:
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Bilateral S-Propositions: P& = {{V,F):V,F e P%}.

Given any S € My, where S = (S, | |), a bilateral S-model is any ordered triple
M =S, ],|-|> where every p; € L is such that |p;| = {|p;|", |pi|~) for some
Ipi|* € Ps. Letting C§ be the class of all bilateral S-models for any & € M,
and C* = (J{CE : S e M}, I will adopt the following bilateral pre-semantics:

Bilateral Pre-Semantics:

(T)" M,sI-Tiff s=s. (DT M,si-Liff s+#s.
(T)™ M,sATiff s=n. ()™ M,sHLiff s=o.
( (
( (

)
)

pi)* M, si-piiff sepil*.
)T MsHipiff se|pil”

=)t M, sl —Aiff M,sH A.
-7 M,sH —Aif M,s|+ A.

T M,slAABiff s=|]{d,t} where M,d - A and M.t I+ B.
- M, sHAABIff M;sH4 Aor M,sH Bor M,s-H Av B.

(n)
(n)
(V)T M,si-FAv B iff M,sI-Aor M,slBor M,sl-AAB.
(V) M,sHAv B iff s=||{d,t} where M,d Hl A and M,t -l B.

Whereas 7T is verified by every state and falsified by the full state which we
may think of as most impossible state, L is verified by no state and falsified by
the null state which may think of as obtaining trivially. We may then observe
that the negation clauses formalise the idea that the exact verifiers for —A are
exact falsifiers for A, and the exact falsifiers for —A are exact verifiers for A.
For instance, the state of affairs of my sitting exactly verifies ‘I am sitting’ just
as much as it exactly falsifies its negation ‘I am not sitting’. Whereas (A)*
and (v)* are the same as the clauses (A) and (v) given in the Unilateral
Pre-Semantics above, we find in (v)~ that only the fusion of falsifiers for
both disjuncts will falsify the disjunction as a whole, and in (A)~ an exact
falsifier for either conjunct will exactly falsify the conjunction as a whole, as
well as a fusion of exact falsifiers for each of the conjuncts.

Having stated the definition of |- and I, we may then expand the domain
of the functions | - |* to include all pfs A of £ as follows:

Bilateral Valuation: se |A|T iff M,s |- A.
se A" iff M,sHl A.

We may then adopt |A| = (JA|", |A|”) as standard notation for the proposition
that the pfs A of £ expresses in M. The semantic clauses for the wfss of £ are
identical to those given in §3| with the exception of replacing |- | in Unilateral
Semantics with |- |". The atomic clauses will then read:

Bilateral Semantics:
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(D ME AQBIff |Al* < |B|*.
($)T M = $A iff there is exactly one s € |A|T.

-+

The semantic clauses for —, A, and v are the same as given before. Accordingly,
we may let ' ¢+  just in case for all M € C*, if M = v for all v € T, then
M E @. As usual, a wis ¢ is CT-valid just in case ¢+ .

Given the addition of falsifiers to the semantics, we are now in a position
to introduce the following operations where P; = (P;*, P") for all i € I:

Bilateral Product: Let N{P;:ie I} =(N\{P' :iel},\/{P :iel}).
Bilateral Sum: Let \/{P; :ie I} =\/{P :iel}, N{P :iel}).

As before, it will be useful to consider binary analogues of bilateral product and
sum, letting P A Q = A{P,Q} and P v Q = \/{P,Q}. We may then introduce
the following unary inversion operator, where X,Y € PS are arbitrary:

Inversion: ~(X,Y) =, X).

The reason for introducing falsifiers in addition to verifiers is best exhibited by
the definition given above, since a set of verifiers on their own cannot determine
a unique set of verifiers for its inverse. By taking propositions to be ordered
pairs of a set of verifiers and set of falsifiers, inverses are uniquely determined
by permuting the sets of verifiers and falsifiers.

Given the expanded formation rules for the pfss of £, we may observe
that Az = (pfs™(L),—, A, Vv, T,L) and .Ajs—r = (PE,—, A, v, T, L) are both
algebras with the same signature for any & € My, where every model M € C;L

induces an £-homomorphism | - | : Az — AE since A, B € pfs™(L):
P71l |A|ePE. L72 |A A B|=|A| A|B|.
LZA |-A| = —|A]. [L73 |Av B =|A| v |B|.

The results above show that the structure encoded by the sentential operators
A, Vv, and — is preserved by every model M € C*. Additionally, it is easy to
show that for any M e C*, the bilateral extremal propositions are as follows:

Bilateral Extremal Propositions
LT& |T|={S {=}). L6 [V|={({s}.5).

L75: || = (2, {a}). LT |L| = (o}, @)

I will now turn to establish the following theorem, extending the Soundness
and Completeness results proven above to the expanded system UGS.
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T4 (Negation Extension) X Ecx ¢ iff ¥ yas @.

Proof. In order to extend both Soundness and Completeness to UGS, I will
introduce the functions neg : wfs " (£) — wfs(L£~) and 9 : C*® — C* where
neg(X) = {neg(o) : 0 € ¥}, proving the following results:

PT2L 3 yes ¢ iff neg(X) Fuesy neg(y) for all ¥ U {p} € wEs™(L).
P73t M = neg(y) iff M™ = ¢ for all M € C* and ¢ € wEs ™ (L).
[P7.4: 91:C® — CT is a surjection.

Given the above, we may then establish both the Soundness and Completeness
for UGS over C* by means of the following argument:

Y Wues ¢ iffi neg(X) Fuasy neg(p)
iff, neg(X) Fcx neg(p)
iffs some M € C* is such that M = neg(o) for all o € 3 but M # neg(p)
iffy some M, € C* is such that M, & o for all o € ¥ but M, ¥ %

iffs X et .

Here (1) is given by (2) follows from Theorem both (3) and (5)
hold by definition. It remains to establish (4).

Assume for discharge that there is some M € C* such that M k= neg(o)
for all o € ¥ but where M F neg(y). It follows by that M = o for all
o e ¥ but M™ £ ¢, where existentially generalising on M € C* completes
the forward direction. Assume instead that there is some M, € C* such that
M, &= o for all o € ¥ but where M, ¥ ¢. By we know that there there
is some M € C* where M™ = M,,. Thus it follows by that M E neg(o)
for all o € ¥ but where M E neg(y), thereby completing the reverse direction.
We may then conclude that X =p+ ¢ iff X Fyas @. O

The remainder of the present section will be devoted to proving the results

stated above. The following section will draw connections with bilattice theory.

R2% If T yas @, then Clasp) Fues @pagp)- (Uniform Substitution)

Proof. The proof is similar to [AR2] where identical reasoning applies
to the axioms ~[NA6] and the axioms and rules in UGSN. O

E15 “_UGSN _‘A AN _‘B x _‘(A V B)l

Proof. Follows from [NA3| and O

E16 “_UGSN _‘A V _‘B x _‘(A VAN B)l

Proof. Follows from [NAS5|and O

E17 |Fyenw Ax ——A]
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Proof. Follows from [NAT]and [NA2] O
L7.1 [=A] ={A],|A|T) if M eC* and |A] € P5 |

Proof. Given the semantics for negation, we know that:

se[=A" iff M,sik—A se|-Al" iff M,sH—A

iff MysHA iff M,sl-A

ff s e lAl 5] iff selAl*. -]
It follows that |[=A|* = |A|~ and |—=A|~ = |A|T, and so we may conclude
that |—A| = {JA|7, |A|T) as desired. O

17.2 [AAB|= A" A |B[",JA[" v B[ ) if M eCT and |A],|B| € P

Proof. Assume M e C* and |A|,|B| € PE. We first demonstrate that
|[AAB|T =|Al" A |B|T and |A v B|” = |A|~ A |B|™ as follows:
se|AAB|T iff M,si-AAB
iff s=| [{d.t} where M,d |- A and M.t |- B
iff s= |_|{d,t} where d € |A|" and t € |B|*
iff selAl" A|B|". [X]
selAv B|” iff M,sAv B
iff s=| [{dt} where M,d~ A and Mt B
iff s=| |{d.t} where de|A|” and t e |B|"
iff selAl” A B[ [7]
The biconditionals in the arguments above hold by definition. Given that
|Al,|B] € JP’:SL, it follows that |A|~,|B|~ € PZ. Consider the following:
si€|AAB|” iff M,s; lAAB
iff M,s; Il A, or M,s; 4 B, or M,s; 4lAv B
iff si€|A|7, ors;€|B|7, ors;€|Av B|”
iff sie|Al” v|B|T U|Av B|”
() iff sielAl” O [B]” v (JA[” A [B[7)
({) if selAl” v B[ [~]
Each of the biconditionals above hold by definition with the exception of
(1) which follows from [ ], and (}) which is given by[L6.8] Thus it follows

that |[A A B|™ = |A|~ v |B|~. Since |A A B| ={|A A B|",|A A B|7) by
Valuation, we know that |4 A B| = (|A|" A |B|*,|A|” v |B|7). O

17.3 [[Av B = (A" v |B[",JA[" ~ |B| ) if M eC* and |A],|B| € P
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Proof. Assume |A|,|B| € PE. We know |A v B| = (A v B|*,|Av B|7)

by Valuation, and |A|*,|B|* € P¥ given that |A|,|B| € P£. Thus:
se|lAv Bt iff M,si-Av B

iff M,sl-A, or M,sl-B, or M,slHAAB

iff se|A|T, orse|B|t, orse|A A B|T

iff se|AlTu|B|tu|AAB|t

iff selAl" V|BIT U (A" A B[

iff se|Al" v |B|T. [+]

(
(1

The biconditionals above hold by definition with the exception of ()
which follows from [}], and (}) which is given by Thus it follows

that |Av B|* = |A|" v |B|", and since |A v B|™ = |A|~ A|B]|™ as shown
by [J] in|L7.2] we know that |A v B| = {|A|" v |B|",|A|” A |B|7). O

~— —

P7.1 (A]€Ps for all M € C5 and A € pfs™ (L)

Proof. Assume M e CE. By definition, |p| € ]P’jg—r for every p € L, where
le| € PE for all e € E by Bilateral Extremal Propositions, thereby
establishing the base case. Assume |A|,|B| € P% for induction. Thus
|A|%, |B|* € P%, where we know by [L7.1} [L7.2] and [L7.3] that:

—Al = A7 AT
|AnB|l = (A" A BT, A" v [B|7)
|[Av Bl = {A[" v |BI",|A]” A [B]7).

We know by and [L6.5|that |A|T A |B|*T, |A]~ v |B|7, |A|*T v |B|T,
and |A|~ A |B|~ are members of P¥, and so |—A|,|A A B|,|A v B| € PS.
It follows by induction that |A| € Pgs for all A € pfs™(L). O

L7.4 [T] =¢S5 {=})]

Proof. Follows from the Bilateral Pre-Semantics. O

L7.5 [L]={a, {o}p)]

Proof. Follows from the Bilateral Pre-Semantics. O

L7.6 [V = ({=},5),

Proof. By abbreviation, [V| = |=T/|, where |[~T| = —=|T| by [L7.1} Thus

=|T| = =S, {=}) by[L7.4] where —(S, {s}) = ({n}, S) holds by definition.
We may then conclude that |V| = ({s}, S) as needed. O

L7.7 [4] = {0}, 9)]

Proof. By abbreviation, |L| = [~L|, where |[~L| = —|L| by [L7.1] Thus
=|L] = <@, {s}) by where —(@, {o}) = ({0}, @) by definition.

We may then conclude that |L| = ({0}, &) as needed. O
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We may now introduce the function neg : wfs™ (L) — wfs(L~) which works
by first distributing negation over disjunction and conjunction in the sub-pfs
of any ¢ € wis™ (L), after which the literals which occur therein are mapped
to unique sentence letters in L. In particular, consider the following:

neg(7) = T
neg(l) = 1
neg(—7T) 4
neg(—1l) = 1
neg(pi) = po
neg(—pi) = P2it1
neg(——A) = neg(A)
neg(A A B) = neg(A) A neg(B)
neg(Av B) = neg(A) v neg(B)
neg(—(A v B)) = neg(—A) A neg(—B)
neg(—(A A B)) = neg(—A) v neg(—B)
neg(A<B) = neg(A) Jneg(B)
neg(A{ B) neg(A) {neg(B)
neg($A) $neg(A)
neg(—$A4) —$neg(A)
neg(——y) ——neg(p)
neg(y A ) neg(y) A neg(y
neg(p v 1) neg(y) v neg(1))
neg(—(¢ v 1)) —(neg(p) v neg(v)))
neg(—(¢ A7) = —(neg(p) A neg(1))).

The function neg works by replacing the elements of pfs™ (L) which occur in
any ¢ € wis™ (L) with pfs(L7), thereby returning a sentence which belongs to
wis(L£7). We may then show that neg: wfs™ (L) — wfs(L™) as follows.

L7.8 neg(A)epfs(L7) for all Aepfs™(L).
Proof. Follows by a routine induction proof. O

L7.9 neg(p) ewfs(L™) for all p e wEs™(L).

Proof. Follows from by a routine induction proof. O

Having defined the function neg : wfs™(£) — wfs(L£™), we may now draw
on uniform substitution in order to define a function gen : wfs(£L™) — wis™(L):

Substitution: gen(A) = A[ﬁl/;][ﬁT/V] [pi/p2:][~pi/p2isi]
gen(@) = Pl=L/L[-T/VIlpi/p2il[—pi/P2i+1]*
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The following two lemmas show that gen(neg(¢)) and ¢ are ground-theoretically
equivalent for all p € wfs™(L).

L7.10 Fycs gen(neg(A)) ~ A for all A e pfs™(L).

Proof. Let A € pfs™(L). The proof goes by induction on complexity.
Assume to start that comp(A4) < 2. Thus either: (1) A=T; (2) A =—T,;
3y A=1;(4) A=—-1;(5) A=p;;or (6) A= —p;. Consider:

Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

Assume A = 7. Thus neg(A) = T, so gen(neg(A)) = 7. We may then
conclude that gen(neg(A4)) = A.

Assume A = —T. Thus neg(A) = V, and so gen(neg(4)) = -T7. We
may then conclude that gen(neg(A)) = A.

Assume A = 1. Thus neg(A) = L, so gen(neg(4)) = L. We may then
conclude that gen(neg(A4)) = A.

Assume A = —1. Thus neg(A4) = L, and so gen(neg(A)) = —-L. We
may then conclude that gen(neg(A)) = A.

Assume A = p;. Thus neg(A) = py;, and so gen(neg(A)) = A. We may
then conclude that gen(neg(A4)) = A.

Assume A = —p;. Thus neg(A) = p2;+1, and so gen(neg(A)) = A. We

may then conclude that gen(neg(A)) = A.

Since gen(neg(A)) = A holds in each of the cases above, we know by
that Fyes gen(neg(A)) ~ A, thereby completing the base case.

Assume for induction that byes gen(neg(A)) ~ A for all A € pfs™(L)
such that comp(A) < n. Let A € pfs™ (L) be such that comp(A) = n. It
follows that either: (1) A= ——=B; (2) A=BAC; (3) A=Bv C; (4)
A=—(BvC)or (5) A= —(B A C). Consider the following:

Case 1: Assume A = ——B. By definition, neg(A) = neg(B), and so
gen(neg(A)) = gen(neg(B)) where -y¢s gen(neg(B)) ~ B by hypothesis.
Thus if follows that Fyes gen(neg(A)) ~ B. Since yes B ® =——B by
we may conclude that yqs gen(neg(A4)) ~ ——B by and so
Fues gen(neg(A)) ~ A follows by assumption.

Case 2: Assume A = B A C. Thus neg(A) = neg(B) A neg(C), and
so gen(neg(A)) = gen(neg(B) A neg(C)). It follows by definition that
gen(neg(B) A neg(C)) = gen(neg(B)) A gen(neg(C)), where we know
that Fyes gen(neg(B)) ~ B and Fyes gen(neg(C)) ~ C by hypothesis.
It follows that s gen(neg(B)) A gen(neg(C)) ~ B A C by and
S0 Fuas gen(neg(A)) ~ A follows from the identities above.

Case 3: Assume A = B v C. Thus neg(A) = neg(B) v neg(C), and
gen(neg(A)) = gen(neg(B) v neg(C)). However, we know by definition
that gen(neg(B) v neg(C)) = gen(neg(B)) v gen(neg(C)), where both
Fues gen(neg(B)) ~ B and ygs gen(neg(C)) ~ C follow by hypothesis.
Additionally, Fyes B < B v C and Fyes C < B v C by and
and so ygs gen(neg(B)) < B v C and Fyes gen(neg(C)) < B v C by
Thus s gen(neg(B)) v gen(neg(C)) < B v C follows by [ART]
Similarly, we know that -y gen(neg(B)) <gen(neg(B)) v gen(neg(C))
and Fyes gen(neg(C)) Jgen(neg(B)) v gen(neg(C)) by and
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and so it follows that both yes B < gen(neg(B)) v gen(neg(C)) and
Fues C < gen(neg(B)) v gen(neg(C)) by Thus we know by
that Fyes B v C < gen(neg(B)) v gen(neg(C)), and so given the above,
Fues gen(neg(B)) v gen(neg(C)) ~ B v C. Thus we may conclude by
the identities above that s gen(neg(A)) ~ A as desired.

Case 4: Assume A = —=(Bv (). Thus neg(A) = neg(—B) Anneg(—C),
and so gen(neg(A)) = gen(neg(—B)) A gen(neg(—C)). By hypothesis,
Fuas gen(neg(—B)) ~ —B and Fygs gen(neg(—C)) ~ —C, and so by
Fues gen(neg(—B)) A gen(neg(—C)) ~ =B A —C. Additionally,
we know that yes =B A —=C ~ —=(B A C) by and so it follows by
[GA9| that +yes gen(neg(—B)) A gen(neg(—C)) ~ —(B v C). Given the
identities above, we may conclude that ;s gen(neg(A)) ~ A.

Case 5: Assume A = =(BAC). Thus neg(A) = neg(—B) vneg(—C),
and so gen(neg(A)) = gen(neg(—B) v neg(—C)). It follows by definition
that gen(neg(—B) v neg(—C)) = gen(neg(—B)) v gen(neg(—C)), where
Fues gen(neg(—B)) ~ =B and Fygs gen(neg(—C)) ~ —C by hypothesis.
By[GAT]and[GA2] s ~B<—Bv —C and tyqs ~C <—Bv —C, and
80 F-yes gen(neg(—B))<I—Bv —C and Fygs gen(neg(—C))<I—Bv —C by
GA9| Thus -y¢s gen(neg(—B)) v gen(neg(—C)) I—B v —C follows by
AR1| Similarly, Fyes gen(neg(—B)) < gen(neg(—B)) v gen(neg(—C))
and Fyos gen(neg(—C)) Jgen(neg(—B)) v gen(neg(—C)) follow by [GAT]
and [GA2| and so by Fues =B Jgen(neg(—B)) v gen(neg(—C))
and tygs —C < gen(neg(—B)) v gen(neg(—C)). Thus we may conclude
that yes =B v —C < gen(neg(—B)) v gen(neg(—C)) by and
so given the above, -yos gen(neg(—B)) v gen(neg(—C)) ~ =B v —C.
However, we also know by Fues =B v —C ~ —(B A (), and so again
by [GA9]it follows that iy.s gen(neg(—B)) v gen(neg(—C)) ~ ~(BAC).
Thus by the identities above -5 gen(neg(A)) ~ A as desired.

Thus Fyes gen(neg(A)) ~ A holds in each of the cases above, and so it
follows by induction that yes gen(neg(A4)) ~ A forall Ae pfs™(L£). O

L7.11 Fyes gen(neg(p)) < ¢, for all p € wis™(L).

Proof. Assume ¢ € wfs™(L). The proof goes by induction where we
may assume to start that comp™(p) = 0. Thus either ¢ = A < B for
some A, B € pfs™ (L), or else ¢ = $A for some A € pfs™(L).

Case I: Assume ¢ = A < B for some A, B € pfs™(L£). It follows
that gen(neg(p)) = gen(neg(A)) < gen(neg(B)), and so by both
Fuas gen(neg(A4)) ~ A and Fyes gen(neg(B)) ~ B. Thus we know by
that Fyes (gen(neg(A)) < gen(neg(B))) <« (A < B), and so it
follows that yes gen(neg(yp)) < ¢ given the identity above.

Case II: Assume ¢ = $A for some A € pfs™(L). Thus it follows that
gen(neg(y)) = $gen(neg(A)), where Fyes gen(neg(A4)) ~ A by
By gen(neg(A)) ~ A Fycs $gen(neg(A)) « $A4, and so we may
conclude that s gen(neg(p)) < ¢.

Since Fyes gen(neg(yp)) < ¢ holds in both of the base cases, we
know that yes gen(neg(p)) < ¢. We may then conclude by a routine
induction proof that yes gen(neg(p)) <« ¢ for all p € wEs™(L). O
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P7.2 |Z Fuas @ iff neg(X) Fygsy neg(yp), for all ¥ U {¢} < wfsﬁ(ﬁ).|

Proof. Let ¥ U {p} < wfs™ (L), and assume X yeg . We argue by
induction on the length of proof, where we assume to start that 3 Y .
It follows that ¥ Fyes ¢ holds by one of the rules or axioms of UG.

Case GA1: Assume ¥ yqs ¢ follows by and so ¥ = @ and
=A< Av B for some A, B € pfs™(L). However, we know by
that neg(A),neg(B) € pfs(L™), and so ygsy neg(A) Ineg(A) v neg(B)
since [GA1]belongs to UGSN. Thus Fygsy neg(A <A v B) as desired. We
may then conclude that neg(X) Fygsy neg(p). I will omit consideration
of the other grounding rules and axioms, all of which are similar.

Case SP1: Assume ¥ Fyqs ¢ follows by and so ¥ = {$A4}
and ¢ = A4 1l. We know by [L7.8| that neg(A4) € pfs(L™), and so
$neg(A) Fuasy neg(A) € L since [SP1| belongs to UGSN. It follows that
neg($A4) Fyasy neg(A 1), since by definition both neg($A) = $neg(A)
and neg(A {4 1) = neg(A) £ L. Thus neg(X) Fyesx neg(p). I will omit
consideration of - all of which are similar to

Case NA1: Assume ¥ g5 ¢ follows by and so ¥ = @ and

¢ = A< ——A for some A € pfs™(L). By neg(A) € pfs(L7),

and 80 Fygsy neg(A) <neg(A) follows by However, we also know
that neg(A < ——A) = neg(A4) Ineg(A), and S0 Fygsy neg(A I ——A).
Thus neg(X) Fuesy neg(y) as desired. I will omit consideration of
- which are similar.

Since neg(X) Fuesy neg(y) holds in each of the cases above, we
may conclude that if £ 9 ¢, then neg(2) ycsy neg(p). Assume for
induction that for all k < n, if ¥ ¥ . ¢, then neg(X) Fyesy neg(p).
Assume for discharge that ¥ 7, ¢. Thus ¥ 7, ¢ follows from one of
the metarules included in UG. Consider the following cases.

Case SPG: Assume ¥ 7 ¢ follows by [SP6] Thus ¢ = A< B
where ¥ F .. $p; — [(pi < A) — (p; < B)] for some k < n and p; € L
which does not occur in A, B, or in any o € . We may then conclude
by hypothesis that neg(X) Fyesy neg($p; — [(pi < A) — (p; < B)]), and
so neg(X) Fuasy $p2i — ([p2i Ineg(A)] — [p2; Ineg(B)]). Given that
p; does not occur in A, B, or in any ¢ € X, we may observe that py; does
not occur in neg(A), neg(B), or in neg(c) for any o € X. Tt follows that
neg(X) Fuasy neg(A) <Ineg(B) by[SP6] and so neg(X) sy neg(A<B).
Thus we may then conclude that neg(X) Fyesy neg(p) as desired. I will
omit consideration of which is similar.

Given the cases above, it follows by induction that if ¥ s ¢, then
neg(X) Fuasy neg(yp). In order to prove the converse, assume instead
that neg(X) Fygsy neg(p). It follows that neg(X) ygs neg(y) since
UG extends UGSN. By gen(neg(X)) tues gen(neg(y)), and so
Y buas @ by Together with the above, we may conclude that
Y Fues @ just in case neg(X) Fyesy neg(p) for all Bu{p} S wis™(L). O

We are now in a position to introduce the function 9 : C* — C*, showing
every M € C* is such that M k neg(y) just in case M™ = . Consider:

N-Model: Given any M € C* where M = (S, |,]- ), let |- [® = - |2, ][V

where |pz|;ﬁ+ = |p22| and |pz|‘ﬁ7 = |p2i+1| for all pi € L.
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N-Map:

Given any M € C* where M = (S,| |,|- ), let M™ = (S, |,|-|™.

We may then prove the following lemmas.

L7.12 M™e CT for all M e C®.

Proof. Let M e C*. It follows that M = (S,| |,|- |) for some S € M,
where S = (S,| |). By definition, |p| € PZ for all p € L. Choose some
pi € L. It follows that both |po;, [p2i+1] € PE, and so {|pai|, |p2i+1]) € IF%”.

Thus [p;|”" € P¥ since |p;
™

|pi

+ - +
IV = ps™, i) where |pi|™ = |pas| and

= |p2i+1|- Since p; € L was arbitrary, we may conclude that

M e Ct where M™ = (S, ],|-|". O

L7.13 |neg(A)| = |A|™ for all A € pfs™(£) and M e C”.

Proof. The proof goes by induction on complexity. Assume to start that
A € pfs™ (L) where comp(A) < 2. Thus either: (1) A=T; (2) A= —T;
(3) A=1;(4) A=—L1;(5) A=p;;or (6) A= —p;. Consider:

Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

Let A = T, and so neg(A) = 7. Thus |neg(A4)| = |T]. Since V| = |T],
we know that |neg(A4)| = |A]?".

Let A = —7, and so neg(A) = V. Thus it follows that |neg(A)| = |V|.
By [L7.12| and [L7.1} [-7®" = |T|™, where [T|® = [V|, and so
|meg(A)| = 4]

Let A = 1, and so neg(A) = L. Thus |neg(A)| = |L|. Since | L™ = |1],
we know that |neg(A4)| = |A]?".

Let A= —1, and so neg(A) = L. Thus it follows that |neg(A)| = |L1].
By [L7.12] and [L7.1} [—L|®" = |L|®", where | L[ = |1, and so
|meg(A)| = 4]

Let A = p; for some p; € L. It follows that neg(A) = pg;, and so

|neg(A)| = |pai|. We also know that [ps|®" = |ps;|, and so |A|? = |pa).

Thus |neg(A)| = |47

Let A = —p; for some p; € L. Thus neg(A) = p2;+1, and so it follows
that |neg(A)| = |pais1]. By [L7.12/and [L7.1] |-p;|™" = |ps|™ , where
pil™ = [paita|. Thus |neg(A)| = [A™".

Given the cases above, |neg(4)| = |A|™" for all A € pfs™ (L) where
comp(A) < 2. Assume for induction that |neg(A)| = |A|m+ for all
A € pfsT(L) such that comp(A) < n. Let A € pfs™ (L) be such that
comp(A) = n. Thus it follows that either: (a) A =—-—B; (b) A= B A C,
() A=BvC;(d) A=—(Bv(C);or(e) A=—(BnC).

Case (a): Assume A = ——B. Thus neg(A) = neg(B), where we
know that |neg(B)| = |B|™" by hypothesis. By [L7.12[and [L7.1] it
follows that |B|?" = [=B|™ = |-=B|®". Thus |neg(4)| = |A|™ .
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Case (b): Assume A = B A C. Thus neg(A) = neg(B) A neg(C),
where both |neg(B)| = |B|®" and |neg(C)| = |C|™" by hypothesis. By
IL7.12/and [L7.2L |B A C|7" = |BI™" A [C|™". Tt follows that:

Ineg(A)| = |neg(B) A neg(C)|
() = |neg(B)| A |neg(C)]
= B AlC™
= \B/\Crn+
= A

Here () follows by an argument identical to [] given in where
the other identities follow from the above. Thus |neg(A)| = |A™".
Case (¢): Assume A = B v C. Thus neg(A) = neg(B) v neg(C),
where both |neg(B)| = |B|™" and |neg(C)| = |C|™" by hypothesis. By
IL7.12/and [L7.3] |[B v C|?" = |BI™" v [C|™". It follows that:

Ineg(A)| = |neg(B) v neg(C)|
() = |neg(B)| v neg(C)]
= B vic™
= \B\/C’|m+
= A

Here (x) follows by an argument identical to [!] given in where
the other identities follow from the above. Thus |neg(A)| = |A4™" .

Case (d): Assume A = —(B v C), so neg(A) = neg(—B) Aneg(—C).
By hypothesis, both |neg(—B)| = |=B|®" and |neg(—C)| = |-C|™".
By [L7.12/and [L7.1} |[-=B/®" = |B|® and |-C|®" = |C|" , as well as
|=(Bv )™ =|BvC[™, where |[Bv C™ =B A|C|™ follows
by We may then argue as follows:

Ineg(4)| = |neg(—B) A neg(—C)|
(x) = |neg(—B)| A|neg(~C)
= |=BIY Al-C™
= B alCPY

= |BvC™™
= |=BvOPY
= A,

Here () follows by an argument identical to [}] given in where
the other identities follow from the above. Thus |neg(A)| = |4[™" .
Case (e): Assume A = =(B A C), so neg(A) = neg(—B) v neg(—C).
By hypothesis, |neg(—B)| = |-B|”" and |neg(—C)| = |-C|™". By
IL7.12|and [L7.1] we know that |[-B|® = |B|® and |-C|®" = |C|™,
as well as [~ (B AC)[™" = [BAC|™ , where |[BAC|™ = |B/™ v|C]™"
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follows by We may then argue as follows:
[neg(A)| = |neg(—B) v neg(—C)

(¥) = [neg(—=B)| v [neg(—C)

= |=BI" v|-C™

= B vICPt

= |BArC™

= ~Bao)P

= |4
Here (*) follows by an argument identical to [{] given in where
the other identities follow from the above. Thus |neg(A4)| = |A™t".

Given that |neg(A)| = |A[®" in each of the cases above, we may
conclude by induction that |neg(A)| = [A|™" for all A€ pfs™(£). O

P7.3 M k= neg(yp) iff M = ¢ for all M € C* and ¢ € wis ™ (L) |

Proof. Let M € C® and ¢ € wfs™(L). The proof goes by induction on
complexity. Assume comp™(¢) = 0. It follows that either ¢ = A < B for
some A, B e pfs™ (L), or ¢ = $A for some A € pfs™(L).

Case I: Assume ¢ = A < B for some A, B € pfs™(L£). It follows that
neg(y) = neg(A) Ineg(B). We may then reason as follows:

M Eneg(¢) iff M =neg(A) <neg(B)
iff |neg(A)| < |neg(B)|
(+) iff [AF < |B™

iff M= A<B

iff M™ = o.
The biconditionals above all follow by definition or assumption with the
exception of (x) which is given by [L7.13] Thus we may conclude that
M E neg(yp) just in case M™ = ¢ as desired.

Case II: Assume ¢ = $A for some A € pfs™(L). It follows that
neg(p) = $neg(A). We may then reason as follows:

M Eneg(p) iff M E= $neg(A)
iff |neg(A)| = {s} for some s € S
(+) iff |A]™"" = {s} for some s € S

iff MM =$A

iff MM E .
As before, the biconditionals above all follow by definition or assumption
with the exception of (%) which is given by Thus we may conclude
that M E neg(y) just in case M™ = .

Given the cases above, it follows by a routine induction proof that
M E neg(yp) just in case M™ = ¢ for any ¢ € wfs™(L). O
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P7.4 |‘ﬁ : C*® — C% is a surjection.

Proof. Choose some M, € Cx. It follows that M, = (S, ||, |- |.), where
Ipilw = {|pil, |pily ) for all p; € L. We may then define | - | as follows:

-]

Since M, € C*, we know that (|p; |}, |p:|;) € P, and so |p; |, |pi|; € PZ.
Thus [pa;|, [p2i+1| € PZ for all i € N, and so [p;| € PZ for all p; € L. By
definition, M = {S|[ |,| - |) € C*. We may then consider the following;:

U™ i)
<|p2i\7 \p2i+1|>
Apils vl
‘pz‘|u-

pily  ifiiseven

pi-1|” otherwise.
2

| R

|pi

The identities above all hold by definition or assumption. It follows that
MM = M,, and so there is some M € C* where M™ = M, for any
M, € Ct. Thus we may conclude that 9 is surjective. O

8 |BILATTICE THEORY

Having extended Soundness and Completeness to UGS, we may now employ
the resources above to define bilateral analogues of oc and € along with a unary
inversion operator over the space of propositions }P’;—”, showing that the resulting
structure forms a bilattice. To begin with, consider the following orders:

Bilateral Containment: (X, YYEU, VY iff X cU and Y € V.
Bilateral Entailment: (X, Y)Y €U, V) iff X cU and Y oc V.

In order to prove that both <IP’§, ©€) and <IP’§, E) are complete lattices, we may
show that for any S € M, and indexed family of propositions {P; : i € I} < IP’:S—F,
/A{P; : i€ I} is the least upper bound with respect to E, and \/{P; : i € I} is
the least upper bound with respect to € as follows:

C81 A{P :iel}=1ubE{P, :iel}.

L82 \/{Pi:iel}=1ubS{P;:iel}.
Since both (PS5, €) and (P%, E) are complete lattices, it follows that (P%, €, E)
is a pre-bilattice. Accordingly, B;-r = <]P’§, G, [E, —) is a bilattice on account of

the fact that <]P’i, G, [E) is a pre-bilattice where ‘—’ is a unary operator on IP%r
which obeys the following conditions for all P, Q € ]P’js—r:

L83 ——P=P.

61



§8 BILATTICE THEORY Benjamin Brast-McKie

L84 If P € Q, then —P E —Q.
L85 If PEQ, then -P € —Q.

It remains to further characterise the properties which B;tr exhibits, marking
important points of departure from Boolean theories in which the space of
propositions forms a complemented distributive latticeﬁ

Given any S € C*, we may begin by showing that B§ is bounded below by
proving that the following identities hold for any P € IP)‘JSL:

86 Pv.1=P. 87 PALl=P.

Observe that \/ @ = L and A @ = 1, and so \/ @ and A @ provide lower
bounds for IE% with respect to € and E. By contrast, \/]P’jg—r ={(S,2) # T and
AP =(@,S) # V given that L, L € P¥. Rather we find that \/ PE = T v L
and AP: = L A V. Letting T=7 v L and T = L AV, it follows that:

88 PvT=T. 89 PAT=T.

It follows that B§ is bounded above by T and T with respect to €@ and E
rather than 7~ and V] Nevertheless, T and T may be defined in terms of
T,L,V, and L, whereas the same cannot be said in reverse@

We may now turn to observe that both A and v are monotonic over their
respective orders. More specifically, for any P,Q, R € IP’;L:

[C813] If PEQ,then PAREQ A R.

814 IfPc@,then PvREQVR.

By contrast with the above, A and v are not monotonic over each other’s
orders given that there are some P,Q, R € ]P’jgr for which:

815 PEQand PVvREQV R.
8161 PcQand PAR&EQ A R.

It follows that B;-r is not interlaced which requires A and v to be monotonic
over both orders [E and @E We may also show that both absorption laws fail,
where B‘JS—r is distributive only in negation since conjunction does not distribute
over disjunction, nor does disjunction distribute over conjunction:

18 |Ginsberg| (1988) first proposed the definition of a bilattice. Alternatively, one could drop
the requirement that pre-bilattices consist of lattices which are complete as in [Rivieccio
(2010)). See also [Mobasher et al.| (2000) for discussion of such discrepancies in usage.

19 See §7 of CHAPTER 4 and CONCLUSION for related discussion.

2 However, by letting PS") = {(V, F) : V, F € P¥/@}, we may show that both A(PS) =V
and \/(IP’fgi)) = T. See |[Fine| (2017b}, p. 642) for related discussion.

21 Restricting P to convex propositions makes the resulting pre-bilattice interlaced.
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L8IT P A(Pv Q)+ P forsomeSeMy and P,Q, R € Ps.
[LRI8 P v (P AQ)+#P forsomeSeMy and P,Q, R € Ps.
819 —(PAQ)=—-Pv—Qforal§eMy, and P,Q € Ps.
820 —(PvQ)=—PA—Q forall S§eM,y and P,Q € Ps.
L8821 Pv(QAR)#(PvQ)Aa(PvR)forsomeSeMy and P,Q, R e Ps.

822 PA(QvR)#(PAQ)v(PAR)forsomeSe My and P,Q, R € Ps.

The symmetry in distribution laws for conjunction over disjunction and wvice
versa may be contrasted with the asymmetry between [L3.21] and [L3.22]
Having offered a preliminary survey of the structure of Pg, I will turn to relate
these results to the theorems of UGS in the following section.

L8.1 [A{P:iel}=1ub{P,:iel}forall Se My and {P,:ic [} c Pg|

Proof. Let S € My, and {P; : i € I} € PL, where P, = (P;", P, for all
i € I. By definition, A{P; : i € I} = (A{P} 1ieI},\/{P :iel}).
Since P" € P¥ for all i € I, both A{P;" :i e I} = 1ubZ{P :ie [
and \/{P; : i€ I} = 1ubS{P; : i € I} follow from and
respectively. Thus P;" > A{P/" :ie I} and P, < \/{P :i¢e I} for all
i€l,andso P, E A\{P;:i€l} foralliel. It follows that A{P; :i¢€ I}
is an upper bound of {P; : ¢ € I'} with respect to [E.

Let Z € IP’%, and assume that P; € Z foralli € I. Thus Z ={Z*,Z~
and P, = (P*, P) for each i € I, where Z*, Pii e PL. Again by
and [L6.7] we know that A{P;" :ie I} > Z* and \/{P; :iel}c Z,
and so A{P;:i€ I} E Z. Since Z was arbitrary, we may conclude from
the above that A{P; :i€ I} = lub={P; : i € I}. O

L8.2 (\/{P:iel}=1ubS{P,:iecl}forall Se My and {P,:i€ [} c P5|

Proof. Similar to [L8.1 O

L8.3 |ﬁﬁP = P for all Se My and P € }P’§|

Proof. Let S € M, and P € PZ. Tt follows that P = (P*, P~) for some
P* € P¥. By definition, —(P*, P~) = (P~, P*), and so it follows that
——(P* P~y =(P*, P~). Equivalently, =—P = P. O

L8.4 [For all S€ My and P,Q € P5, if P € Q, then —P E —Q. |

Proof. Let S € My, and P € ]P’;—r, and assume P € Q. Thus it follows
that P = (P*,P7) and Q = (Q",Q ) for some P Q* € P¥, where
both P* < Q* and P~ > Q—. Thus (P~,P*) E {Q,Q7"), and so
—(P*,P7)E ~Q",Q ™). Equivalently, =P E —Q as desired. O

L8.5 [For all S € My, and P € Pg, if P E @, then =P € —Q. |

Proof. Similar to |L8.4 O
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L8.6 |P\/J_ PforallSeMooandPe]P’l

Proof. Let Se My, and P € Pg. It follows that P = (P*, P~) for some
P* e P¥. Since both P~ v @ = P~ and P A {0} = P*, it follows that
(Pt A{o}, P~ v @) =(Pt,P7), and so P A L = P by definition. [

L8.7 [PAL=PforalSeM,and PePg|

Proof. Similar to [L8.6 O

L88 [Pv T =T forall S €M, and P € Ps |

Proof. Let S € M, and P € PZ. It follows that P = (P*, P~) for some
P*eP¥, andso PT v S = Sbymandp /\@-Qbym
Thus (Pt v S, P~ A @) ={(S,8),andso Pv T =T as desired.

L8.9 |P/\ T =T forall S € M andPeP§.|

Proof. Similar to[L8.8 O
L8.10 &2 e My, where 83 = (P({a,b,c}), ).

Proof. Let 83 = (P ({a,b,c}),|J). Since ] satisfies Associativity where
U{z} = z for all z € P({a,b,c}), we know that S € M. O

L8.11 [Forany Se My and X, Y, Z e P, if X D> Y then X A ZDY A Z. |

Proof. Let S € My, and X,Y,Z € P¥, and assume X > Y. It follows
that X » Y and X « Y. Letting s € Y A Z, we know that s = | |[{z,y}
for some z € Y and y € Z, and so there is some z € X where z = x. Thus
Ll{z,y} €Y A Z where | [{z,2} = x. We may then reason as follows:

LI [tz0hsy = LIz wb| e 03
= Ut oh b
= Ut )
= LI [z 2h | Jtwt
= | [y

= S.

The identities stated above follow by Collapse and Associativity given our
assumptions. Thus | [{| {z,y},s} = s, and so |_[{z,y} = s. Generalising
on s, we may conclude that that X A Z > Y A Z.

Choose instead some u € X AZ andv € Y AZ. Thus u = | [{z, z} and
v=| {y,w} for somex € X,y €Y, and z,w € Z. Since X « Y, we know
that | [{z,y} € Y, where | |[{z,w} € Z given that Z € Ps. Accordingly,

LI{LI{=,y}, [ {z,w}} € Y A Z, and so | [{| K=z, 2}, [ I{y, w}} €Y A Z, s0
| Hu,v} e Y AZ. Thus X AZ <Y AZ,andso X A ZD>Y A Z. O

L8.12 |For any S € My and X, Y, Ze P, f X C Y, then X vZCY v Z. |
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Proof. Let S € My, and X,Y,Z € PE, and assume X > Y. Choose
se XVR". By[L6.8l se XUZU(XAZ). Ifse XUZ, thenseY uZ,
andsose YU ZuU (Y AZ) Ifse X A Z, then s =| [{z,y} for some
reXandye Z,andsose Y AZsincex €Y. ThusseYuZu (Y AZ),
and so s €Y v Z by [L6.8] It follows that X v Z Y v Z. O

L8.13 |F01" any S € M, and P,Q,RGIP%, if PEQ,then PAREQ A R.l

Proof. Let Se€ My and P,Q,R¢€ ]P’};, and assume P E @ for discharge.
Thus PT > QF and P~ < Q~, where P*,Q*, R* € PZ. It follows that
P* AR*D> Q" A RT by[L8.11} and P~ v R~ < Q- v R~ by[L8.12]
Accordingly, (PT ARt P~ v R )E{(QT ART,Q~ v R™), and so by
definition we may conclude that P A RE Q A R. O

L8.14 |F0r any S € My, and P,Q,RePs,if PEQ, then Pv REQ v R. |

Proof. Similar to[L8.13] O
L8.15 |P EQand Pv RIEQ v R for some § € My, and P,Q,R€P§.|

Proof. Let Sz = (S, U) where S = P({a,b,c}). By [L3.12] we know that

Sz € M. Let P = ({{a}}, {{a}}), @ = ({{a}, {b}, {a,b}}, {{a}, {b}, {a, b}}),
and R = {{{c}}, {{c}}), and observe that P,Q, R € IF’;LS. For the sake of

readability, let a = {a}, 8 = {b}, and v = {c}, where ‘x.y’ abbreviates
‘U{z,y}’. We may then observe the following:

P = {a},{a})
Q = <{a5}’ {a5}> PvR = <{05777 Ot.")/}, {O"Y}>
R = ) Qv R = {B,apbalA},{aBA}).

Given that vy € Pv Rand S € Q v R, but 7.6 ¢ @ v R, we may
conclude that Pv R Qv R. However, P E @, concluding the proof. [

L8.16 |P@QandP/\R@;Q/\RforsomeSeMoo and P,Q,R€P§.|

Proof. Similar to [L8.15] O
L8.17 [P # P A (P v Q) for some S € M, and P,Q, R € Ps. |

Proof. Let Sz = (S, Uy where S = P({a,b,c}). By [L3.12] we know that
S5 € My,. Let P ={{{a}},{{a}}) and Q = {{{b}}, {{b}}), observing that
PQe P:;:. For ease of exposition, let a = {a} and § = {b}, where ‘z.y’
abbreviates ‘( J{z,y}’. Thus it follows that:

{a. B, 0.8}, {a.5})
o, a8}, {a, a.8}).

We may conclude the proof by observing that P # P A (P v Q). O
L8.18 [P # P v (P A Q) for some S € My, and P,Q, R € Ps. |

Proof. Similar to [L8.17] O
L8.19 [-(PAQ)=—Pv —Q forall S €M, and P,Q € Ps. |

PvQ@
PA(PvQ)
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Proof. Let S € My, and P,Q € P%. It follows that P = (P*, P~) and
Q =(Q",Q) for some P*, Q* € PL. We may then argue as follows:

~(P A Q) (P, P7) A QT,Q7))
= (P AQT,PTv Q7))
= (PvQ,P"rQ%)
= (P, PTH)v{Q,QF)
- —Pv—Q.

The identities above all follow by definition or assumption. O

L8.20 [~(Pv Q)=—-P A —Q forall Se M, and P,Q € P<. |
Proof. Similar to [L8.19] O

L8.21 [Pv(QAR)+#(PvQ) A(PvR) for some S € My, and P,Q, R € P5 |
Proof. Let P = ({{a}}, {{b}}), Q = ({{b}}, {{c}}), and R = {{{c}}, {{a}}).

For ease of exposition, let a = {a}, f = {b}, and v = {c}, where ‘x.y’
abbreviates ‘| J{z,y}’. We may then observe the following:

= {o} {BD) QAR = {av}{a,B,a.8})
Q = {8L{vH PvQ = o B,a.8},{BAD)
R = <{’}/},{Oé}> = <{Oé,’)/,04.’7},{04.’}/}>.

Pv R
Pv(@QnaR) = {a,av}{B8,a.8})
(Pv@)A(PvR) o, ., ay, a8, {ay, By, a.B)).

By inspection, we may conclude that P v (Q A R) # (P v Q) A (P v R),
observing that P,Q, R € IP’:S—F3 and s% € M, by |L8.10 O

L1822 |[PA(QVR)#(PAQ)v (P AR) for some S e M, and P,Q, R e P<
Proof. Let P = ({{a}}, {{b}}), Q = ({{b}}, {{c}}), and R = ({{c}}, {{a}}).

For ease of exposition, let a = {a}, 8 = {b}, and v = {c}, where ‘z.y’
abbreviates ‘( J{z,y}’. Given the identities in [L8.21] it follows that:

PAQ = {BA}{a,B,0.8})

PrR = {arv){ar,a9})

PA(@vR) = {av}{a,B,a.8})
(PAQ)v (PAR) = {apb,avy,alBA}{B,ab,ay, 8.9 a.84}).

By inspection, we may conclude that P A (Q v R) # (P A Q) v (P A R),
observing that P,Q, R € ]P’:Si3 and s3 € M, by |L8.10 O

9 |THE LoGIic OoF ESSENCE AND GROUND|

In order to make the connections between the propositional bilattice and UGS
more perspicuous, it will help to introduce a number of further abbreviations,
defining essence and ground in terms of unilateral ground as in

Unilateral Essence: Let "A > B" abbreviate "A A B ~ B".
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Ground: Let "A < B" abbreviate (A< B) A (—A> —B)".
Essence: Let "A = B" abbreviate (A> B) A (—A<J—B)".
Reduction: Let "A = B" abbreviate (A < B) A (A€ B)".
Identity: Let "A = B" abbreviate (A= B) A (B = A)".

Whereas unilateral ground only describes the relationship between the exact
verifiers for the antecedent and consequent, essence and ground constrain both
the exact verifiers and falsifiers for the propositions involved.

The following results will help to bring out the manner in which the
operators defined above are able to describe the propositional bilattice B;L
characterised above for any given S € Mly,. In particular, I will show that the
following hold for any M € C* and A, B € pfs™(L):

L1 ME A> B iff |Al*>|B|*.

L9.2l Mk A<Biff |Al€|B|.

[L9.3] M= Ac B iff |AlE |B|.

L9.4 Mk A= Biff |A| €|B| and |A| E |B|.
L9535 ME A=Biff |Al =B

Given these connections, we may show that each of the following Boolean
identities admit of countermodels in the present setting:

[L9.6] Hcr A=AA(AvV B). [L9.8 Hexr AV(BAC)=(Av B)A(Av(O).
et A=Av (AAB). 9.9 He:r AA(BvC)=(AAB)v(AACQ).

These results help to distinguish UGS from extensional and intensional logics
which describe spaces of propositions which form complemented distributive
lattices. Additionally, we may show that analogues of the identities above hold
when identity has been replaced with reduction, highlighting the distinctive
role which reduction has to play in the present theory.

Rather than continuing to work over UGS, it will help to further exhibit
the relationships between essence and ground and the extensional operators by
considering the following range of theorems and admissible rules within UGS:

T1 L1 <A T9 AAB<AvB.

T3 LcC A Tl A= AA(Av B).

T5 A<AvB.
T13 A= Av (AAB).

T7 Ac AAB.
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T2 A<T Rl A<B + BC AvB.
R3 ACB + B<AAB.
T4 AcT. R5 A<C,B<C + AvB<C.

R7 Ac(C, B=(C -AABCC.
T6é B<Av B.
R9 A<B,B<C R A<C.

R11 Ac B, B=C HACC.
T8 B AAB.
R2 A<B - AvBCB.

R4 AcB + AAB<B.
Ti10 Av B AAB.

R6 A<B, A<C - A<BAC.

T12 AA(BvC)= (ArB)v(ArcR8 AEB, ASC FASBVC
R10 A= B, Cc=D AACEBAD.

Ti4 Av(BAC)=(AvB)A(AvCR12 A<B,C<D RrAvC<BvD.

Let the syntactic consequent relation g for The Logic of Essence and Ground
(EG) be the smallest relation closed under truth-functional consequence which
satisfies the above. In contrast to UGS, the subsystem EG aims to capture a
natural means of reasoning about essence and ground.

Rather than deriving each of the axioms and rules for EG within UGS, I
will provide derivations of T11 — T14 as characteristic examples:

L9.10 Fyes A= AA(AvV B).
LOIT +ves A= Av (AAB).
L9019 FHus AA(BvC)=(AAB)v(AAC).

L9920 tyis AV (BAC)= (Av B)A(Av ).

In order to further characterise the granularity of the present theory of bilateral
propositions, we may also derive the following with UGS, where I will establish
the theoremhood of ID9 and ID11 by way of [T4] for convenience:

ID1 Avl1l=A ID9 —(AAB)=(—Av —B)
ID3 AvT=T. IDill —~(Av B)=(—-AA—B)
ID5 A=AAA ID13 A=--A4
ID7 AAB=BAA ID2 AAl=A
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ID4 AAT=T. IDR2 A=B (ArC)=(BAC)

ID6 A=AV A

ID8 AvB=BvA IDR4 A=B, B=CrA=C

ID9 (AAB)AC=AA(BAC
(AAB) A A (BAC) IDR3 A=B+(Av(C)=(Bv()

ID11 (AvB)vC=Av (Bv(O)

IDR1 A=B+-B=A IDR5 A=B+—-A=-B

Given the results above, we may let the syntactic consequent relation Fp;
for The Logic of Propositional Identity (LPI) be the smallest relation closed
under truth-functional consequence which satisfies the above. In contrast EG
which streamlines reasoning about essence and ground, LPI aims to capture a
natural means of reasoning about propositional identity in the present setting.
These results help to further characterise the structure of the present theory
of bilateral propositions in contrast to the traditional Boolean theories of
propositions developed in extensional and intensional logics.

Despite having proven that UGS is sound and complete over C*, it remains
to show whether the subsystems EG and LPI also admit of completeness results.
In particular, one might aim to show that UGS is a conservative extension of
both EG as LPI. Leaving these further pursuits for another day, I will conclude
by presenting proofs of a selection of the claims asserted above.

L9.1 [For all M eC* and A,Bepfs (L), M= A> B iff |A|" >|B|"|

Proof. Let M e C* and A, B € pfs™(£). We may the argue as follows:

MEADB iff MEB~AAB
iff |BI" =|AAB|"
(1) iff |BI" =|A[" A B[
() iff |A" = |BI".

The biconditionals above hold by definition with the exception of ()
which is given by and (f) which requires further argument.

Assume |B|T = |A|" A |B|", and let s € |B|". Thus s € |A|* A |B|*,
and so s = | |{z,y} for some x € |A|* and y € |B|*. It follows that z C s,
and so |A|T » |B|" since s was arbitrary. Assuming that x € |A|T and
y € |B|T, it follows that | [{z,y} € |A|T A |B|T, and so | [{z,y} € |B|"
by assumption. Thus |A|" « |B|*, and so |[A|T > |B|*.

Assume instead that |A|*>|B|*. Thus |A|T » |B|* and |A|" « |B|™.
Letting s € | B|*, it follows that there is some y € |A|* where y = s, and so
| [{y, s} = s. By definition, | [{y, s} € |A|T A |B|*, and so s € |A|* A |B|*.
Thus |B|" < |A|T A|B|". Assume instead that ¢ € |A|" A |B|*. It follows
that ¢ = | |{z,y} for some z € |A|* and y € |B|". Since |A|" « |B|T,
it follows that ¢ € |B|*, and so |A|T A |B|T < |B|". Given the above,
|B|T = |A|T A |B|", thereby establishing (). O

L9.2 |For all M eC™ and A, B € pfs™ (L), M = A < B iff |A| € |B||
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Proof. Let M eC* and A, B € pfs™(£). We may the argue as follows:
MEAS<B iff M (A<B) A (-A> —B)
iff MEA<LBand ME —-A>—-B
(+) iff |AI" < |B|* and |[-A" > [-B[*
Jf A" < [B|" and |A|]” > [B|”
iff |4] € |Bl.

All of the biconditionals above hold by definition with the exception of
(#) which follows from the Bilateral Semantics together with O

L9.3 |[For all M eC* and A,Bepfs (L), M= Ac B iff |A| E |B||
Proof. Let M e C* and A, B € pfs~(£). We may the argue as follows:
MEACB iff ME(A> B) A (A< —-B)
iff MEA>Band ME-A<—-B
(+) iff |AI" =[BT and |=A|" < [=B|"
iff |AI" = |B|" and |A|” < |B[”
iff |Al E |B].

All of the biconditionals above hold by definition with the exception of
(#) which follows from the Bilateral Semantics together with O

L9.4 |For all M eC* and A,Bepfs (L), M= A= B iff |[A| € |B|and |[A| E |B||
Proof. Let M e C* and A, B € pfs~(£). We may the argue as follows:
MEA=B iff M=(A<B)A(Ac B)
f MEA<Band MEACB
() iff |Al€|B|and[A|E|B|.

The biconditionals above follow by definition with the exception of (x)

which is given by and O
L9.5 |For all M eC™ and A, B € pfs (L), M = A= B iff |Al =|B||
Proof. Let M e C* and A, B € pfs™(£). We may the argue as follows:

)
MEA=B iff M= (A= B) A (B=A)
iff MEA=Band MEB= A
() iff |Al€|B|,|Al € |B|,|B| € |A], and |B| E |4]
(4) iff 4] - |B|.
The biconditionals above all follow by definition with the exception of
(1) which is given by and (f) which requires further support.
Assume that: (1) |A| € |B|; (2) |A| € |B|; (3) |B| € |A|; and (4)
|B| E |A]. Tt follows that |A|* < |B|* and |B|" < |A|* from (1) and (3),
where similarly |A|~ < |B|~ and |B|~ < |A|~ follow from (2) and (4).
Thus we may conclude that |A| = |B|.
Assume instead that |A| = |B|. Thus |A|* = |B|* and |B| = |A|%,

and so |A|* < |B|* and |B|* < |A|*. Since A, B € pfs~ (L), both
|A|,|B| € P$ by and so |A|*,|B|* € P%. Thus |A|* > |B|* and
|B|* > |A|* follow by and so (1) — (4) follow by definition. O
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L9.6 |#c: A=A A (Av B) for some A, B € pfs™ (L),

Proof. Recall that P # P A (P v Q) for some S € M, and P,Q € P%
by [L8.17] Let M € CZ where |p1| = P and |ps| = Q. It follows that
|p1] # |[p1] A (p1] v |p2|). Thus we may reason as follows:

Ip1] # [p1l A (Ipal v [p2l) iff |pil # |pa| A [p1 v p2l
iff Ip1l # Ipr A (1 v p2)|
(%) iff M ¥ pi=p1A(p1Vp2).

The biconditionals above hold by definition with the exception of (x)
which is given by Thus M # p1 = [p1 A (p2 v p3)]. O

L9.7 [#or A=AV (A A B) for some A, Bepfs (L),

Proof. Recall that P # P v (P A Q) for some S € M, and P,Q € P%
by LS.ISI Let M € Cx where |p1| = P and |p2| = Q. It follows that
[p1] # [p1] v (Ip1] A |p2|). Thus we may reason as follows:

Ip1| # |p1l v (Ip1| A |p2l) iff |p1l # [p1l v [p1 A p2l
iff |Ip1l # |p1 v (1 A p2)]
(%) iff M p1=p1v(p1Ap).

The biconditionals above hold by definition with the exception of ()
which is given by Thus M & p1 = [p1 v (p2 A p3)]- O

L9.8 |t Av(BAC)=(Av B)a(AvCC)forsome A, B,C € pfs (L)

Proof. Recall that P v (Q A R) # (P v Q) A (P v R) for some S € M,
and P,Q, R € P$ by [L8.21] Let M e CE where |p;| = P, |p2| = Q and

Ips| = R. Thus |p1| v (Ip2| A |p3|) # (Ip1] v [p2]) A (Ip1] v |p3|), and so:

Ip1l v (Ip2| A Ipal) # (Ip1] v [p2]) A (Ip1] v |p3])
iff [p1l v Ip2 A p3| # [p1 v p2| A |p1 v ps]
iff b1 v (P2 Ap3)| # (1 v p2) A (p1V p3)
(%) iff MEp1Lv (p2Aps)=(p1vp2) A (p1Vps)

The biconditionals above hold by definition with the exception of (*) which
is given by Thus M i p1 v (p2 A ps) = (pr v p2) A (p1 v ps). O

L9.9 |t AA(BvC)=(AAB)v(AaC)forsome A, B,C €pfs (L),

Proof. Recall that P A (Q v R) # (P A Q) v (P A R) for some S € M,
and P,Q, R € Pf by [L8.22] Let M € CE where |p,| = P, |p2| = Q, and

ps| = R. It follows that [pi| A (Ip2| v [ps]) # (Ip1] A [p2]) v (Ip1] A [ps]).
Thus we may reason as follows:

1| A (Ip2| v Ipsl) # (Ip1] A [p2]) v (Ip1] A [ps))
iff |p1l A |p2 v p3| # [p1 A pa2| v [p1 A ps
iff Ip1 A (2 v p3)| # [(p1 A p2) v (p1 A p3)|
(*) iff M p1 A (p2vps)=(p1Ap2) Vv (p1Aps).

The biconditionals above hold by definition with the exception of (*) which
is given by Thus M p1 A (pa v p3) = (p1 Ap2) v (p1 v ps). O

71



§9 THE LoGIC OF ESSENCE AND GROUND Benjamin Brast-McKie

L9.10 |Fyes A= AA(Av B)forall A,Bepfs (L),

Proof. We know that tyes AA[AV (AAB)|J(AAA)v[AA(AAB)]
by where Fyes A A A< A v (A A B) follows from |[GA4|and [GA1
Additionally, Fyes A A (AAB)<Av (A A B) holds by @‘EHE:‘M GAS
and Thus Fyes (AAA) v [AA(AAB)]<Av (A A B) follows by
and 50 Fygs AA[AvV (AAB)]<Av (A A B) holds by [GA9] Next
observe that Fyes A A (A A B)JAA[A vV (A A B)] follows from [GA2
ﬁL and [GAS8| and so s AA B<IAA[AvV (A A B)] holds by |GA6
GA3 Additionally, Fyes A<<A A [A v (A A B)] follows
from [E1] [GAT] [GAS8]| [GA3] and [GAY] and so we may conclude that
Fuas AV (AAB)JAA[AvV (A A B)] by[AR1] Together with the above,
it follows that Fyes A v (AA B)~ AA[A vV (A A B)], and so by [R2*
Fues AV (A A —-B)~ —AA[-Av (—A A —B)]. By[NE12| [NE13
and [AR4] it follows that -yes =A v (mAA—=B) ~ =AAr=[AA (Av B)],
and 8o Fygs A > —[A A (A v B)] by definition.

Given that Fyes ASAA(Av B) by it follows from the above that
Fues A < A A (A v B). Since we may show by a similar argument that
Fues A E A (Av B), we may conclude that Fyes A= AA(Av B). O

L9.11 |Fyes A=AV (AAB)forall A,Bepfs (L),
Proof. Similar to [L9.10] O
L9.12 |y —~Av —B=—(A A B) forall A, Bepfs™(L).

Proof. Let M € C* and A, B € pfs™(£). By [P7.1] |A|,|B| € P%, and
so =(|A| A |B|) = —|A| v —|B| by |L8.19} Consider the following:

—([A[ A [B]) = =|A] v =|B| iff =[AA B|=[=A|A|-B]
iff |=(AAB)|=|-Av —B|
(#) iff Eex “(AAB)=-Av —B.
The biconditionals above follow by definition with the exception of (%)

which is given by Thus Ee+ (A v B) = =A A =B, and so we
may conclude that yes —=(A v B) = =A A =B by Theorem O

L9.13 kEc+ ~(Av B)=—-AA—-Bforall A, Bepfs (L).
Proof. Similar to drawing on in place of O
L9.14 TForall SeMy and X, Y eP2,if X C Y, then Y > X.

Proof. Let S € My, and X,Y € PE, and assume X < Y. Choose some
s€ X. It follows that s € Y, where s C s since |_[{s, s} = s by Collapse.
Generalising on s, we may conclude that Y > X. O

L9.15 XA(YVvZ)S (XAY)v (X AZ)forall SeMy and X,Y, 7 € PS.

Proof. Let S € My, and XY, Z € PZ, and assume s € X A (Y v Z). Thus
s = [{z,u} forsomer € X anduecYvZ. By[L6.8l uecYUZU(Y A 2).
HueYuZ,thense (X AY)u (X AZ),andsose (X AY)v (X AZ)
by Assume instead u € Y A Z. It follows that v = | |{y, 2} for
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some y €Y and z € Z, and so | [{z,y} € X A Y and | [{z,2} € X A Z.
Thus | {| {z, v}, [{z,2}} € (X AY) A (X A Z). Observe the following:

LI s whs | 2ty = Ut b {21

= Ua) fy. 23
LG Lty 21
= |_|{x,u}

Thus se (X AY)A (X AZ),andsose (X AY) v (X A Z) by |L6.8|
Given the above, X A (Y v Z) S (X AY) v (X A Z) as needed. O

916 Xv (Y AZ)c(XVvY)A (X v Z) forall SeMy and X,Y,Z € PZ.

Proof. Let S € My, and X,Y,Z € PZ, and assume s € X v (Y A Z). By
L6.8 se XUY AZ)U[X A AZ)]. If se X, thense X vY and
seXvZ andsos€e (X vY)a (X vZ). Assume instead that s€ Y A Z,
then s = | |{y, 2} for some y € Y and z € Z. ByyerYand
zeXvZ andsose (X vY)A (X v Z). Ifinstead se X A (Y A Z),
then s = | |{z,u} for some z € X and u e Y A Z, and so u = | [{y, z} for
some y €Y and z € Z. By | lz,y}e X vY and | [{z,2} e X v Z,
and so | [{| {z, v}, {z,2}} € (X vY) A (X v Z). By the same argument

given in[L9.15] s = | [{| [{z,y},| [{z,2}}, andso se (X vY) A (X v Z).
Thus we may conclude that X v (Y A Z) S (X vY) A (X v Z). O

L9.17 XAY V) (XAY)v (X AZ)forall SeMy and X,Y, 7 € PE.

Proof. Immediate from [L9.15|and [L9.14] O

L9.18 XVv(YAZ)B(XVY)A(X v Z)forall SeMy and X,Y, 7 € PE.

Proof. Immediate from [L9.16|and [L9.14] O

L9.19 |Fues AA(Bv(C)=(AAB)v((AAC)forall A, B,Cepfs (L),

Proof. Let M e C* and A, B,C € pts~(L). Thus |A|,|B|,|C| € PE by
and so |A|*, |B|*,|C|* € P¥. Consider the following:

MEAA(BvVvC)=(AAB)v(AAC)
iff MEAA(BvVvC)<(AAB)v(AAC)and
MEAABVCO)E(AAB)V (AAQ)
iff MEAA(BvVvC)<S(AAB)v (AACQ),
ME-[AA(BvO)|E—[(AAB)v(4AnQ)],
MEAABvVC)>(AAB)v (AAC), and
ME-[AA(BvC)]<d—-[(AAB)v (AAQ)].

[\

= W
= D = —

Whereas (1) follows immediately from by Theorem each of the
remaining conjuncts require further argument.
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Conjunct 2: Since |[A|~ A(|B|~ v |C|)>(JA|~ A|B|7) v (|A]~ A|C|7)
by we may argue as follows:
A" A (B[ v ICIT) B (JA[ A [B]7) v (JA[” A [C]7)
iff A7 A|BvC|T>]AAB|”VvIAAC|”
if [AA(BVvCO)|">|(AAB)v(AAC)|”
iff |S[An(BvONTEI=[(AAB)v(ArCO)T
iff ME=[AA(BvCO)]>=[(AAB)v(AnQC).
The biconditionals above follow from — with the exception of
the last which follows from This establishes (2) as desired.
Congunct 3: Since |A|* A (|B]T v|C|T)=(JA|T AIB|T) v (JA]T A|CTT)
by we may argue as follows:
[AI" A (IBIT v [CTT) = (JAIT A BIT) v (JAIT A |CTT)
iff AP AIBVvCOIT>|AAB|TVv]IAACIT
iff |AAN(BvVO)|TB|(AAB)v(AACO)|T
iff MEAA(BvVCO)E(AAB)v(AAQ).
The biconditionals above follow from and with the exception
of the last which follows from This establishes (3) as desired.
Conjunct 4: By[T6] yes —An(—Bv—C)<(=AA—B)v(=Ar—C),
and so Ecx —A A (=B v =C)<(—A A —-B)v (—AA—C) by Theorem
Thus M = —=A A (—Bv =C) < (=A A —B) v (—A A —=C), and so:
ME—-AA(=Bv—-C)<d(=AA—=B)v(=Ar—-0C)
iff |mFAA(=Bv =0)|f c|(=AA—=B)v (=4AAr-C)"
iff |=A|" A|=Bv —=C|" c|=AA-B|tv|-AA-=C|"
iff |=AIT A (=BT v I[=CI7) < (I2AIT A [=B7) v (I2AT A [=CIF)
iff A7 A (B[ v IC]7) = (JAIT A [BI7) v (JA]” A [C]7)
iff A7 AIBvC|T<C|AAB|” v]IAAC|”
iff [AA(BvO)|~"<S|(AAB)v (AAC)
iff =[AABvONTc[=[(ArB)v(ArO)]T
if M=—-[AA(BvC)]<=[(AAB)v(AnQO)].
The biconditionals above follow from - with the exception of
the last which follows by the Unilateral Semantics. This proves (4).
Since all of the conditions (1) — (4) are met, we may conclude that
MEAA(BvVC)= (AAB)v (AnaC), and so by generalising on

M e C*, we know that Eex AA (BvC)= (AAB)v(AAC). Thusit
follows by Theorem [T4]that -yes AA (BvC) = (AAB)v(AAC). O

L9.20 [ce: AV (BAC)=(AvB)A(AvC(C)foral A, B,Cepfs (L),

Proof. Let M e C* and A, B,C € pfs™(£). Thus |A],|B|,|C| € P by
S
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[P7.1] and so |A|%,|B|%, |C|* € P%. Consider the following:

MEAV(BAC)=(AvB)A(Av ()
iff MEAV(BAC)<(AvB)A(AvCC)and
MEAV(BAC)E(AVvB)A(Av ()
iff MEAvVv(BAC)<S(Av B)a(AvO),
ME=[Av (BACO)|B>—[(Av B) A (Av (),
MEAV(BAC)>(Av B)A(Av (), and
ME—-[Av(BAC)<—-[(AvB)A(AvO).

A~~~
W~ )
NN NI

Whereas (1) follows immediately from by Theorem each of the
remaining conjuncts require further argument.
Conjunct 2: As |A|~ v (|B|” A|C|)>(JA|” v |B|7) A (JA|” vIC|7)
by we may provide the following argument:
A7 v (IBI” A [CIT) 2 (A7 v [B]7) A (A7 v IC]7)
iff A7 v |IBAC|"B|AvB|”AlAVC|”
iff [Av(BAC)| " >|(AvB)A(Av )™
i 1-[Av (B AON* B -[(Av B) A (Av O
iff ME—=[Av(BAC)|>=[(Av B)A(Av(O).
Each of the biconditionals above hold by definition with the exception of
the last which follows from This establishes (2) as desired.
Congunct 3: As |A|* v (|B]T A |C]T) > (JA]T v |B]T) A (JAIT v |C|T)
by we may provide the following argument:
[A[* v (IBIT A ICTT) = (AT v [BIT) A (JAT v [CI7)
iff |A|"v|IBAC|T>]AV B|t AJAV O
iff [Av(BACO)|T>[(AvB)A(AvO)|T
iff MEAV(BAC)>(Av B)A(AvO).
Each of the biconditionals above hold by definition with the exception of
the last which follows from This establishes (3) as desired.
Conjunct 4: By[T6] yaes —Av (—=BA—C)<(=Av—B)A(—=Av—=C),
and so e+ —Av (=BA—C)<(=Av—=B)A(—Av—C) by Theorem [T4]
Thus it follows that M E —Av (=B A —C)<d(—=Av —-B) A (mA v —(C),
and so we may reason as follows:
ME—-Av (-BA—-C)<d(—-Av —=B) A (—Av =C)
iff |mAv (=B A—=C)|Tc|(=Av =B)A(=Av-C)|"
iff |-A|T v I|=BA-C|tTc|=Av =B|t A|-Av =C|T
iff |=AIT v (=BT A [=CTT) < (I2AT v [=B]7) A (|=A]T v [=C[7)
iff |AI” v (IBI” AlCT) < (A7 v [B]7) A (A7 v IC7)
iff A7 v|BAC|"<c|AvB|TAlAVvC|™
iff [Av(BAC)  c|(AvB)a(AvC)|™
iff |F[Av (BAONT<[=[(AvB)A(AvO]T
iff MeE—=[Av(BAC)|<—=[(Av B)A(Av ).
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The biconditionals above all hold by definition with the exception of the
last which follows by the Unilateral Semantics, thereby proving (4).

Since all of the conditions (1) — (4) are met, we may conclude that
MgEAV (BAC)= (Av B) A (Av (), and so by generalising on
M e C*, we know that e+ Av (BAC) = (Av B)A(Av ). Thus it
follows by Theorem [T4]that s AV (BAC) = (AvB)A(AvC). O
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